URBAN GREEN ENVIRONMENTAL

1700 Beason Street Baltimore, Maryland 21230

Supplemental Phase II Environmental Site Assessement Report

State Center Property – Parcel G

900 North Eutaw Street Baltimore, Maryland 21201

Prepared For:

State Center Parcel G Master Tenant LLC 3420 2nd Street Baltimore, Maryland 21225

September 2010

1.0	INTRODUCTION	3
2.0	SITE BACKGROUND	4
2.0	2.1 Site Location and Description	
	2.2 Site History	
	2.3 Environmental Setting	
	2.3.1 Topography	
	2.3.2 Geology and Lithology	
	2.4 Prior Environmental Investigations	
3.0	PHASE II INVESTIGATION METHODOLOGY	7
5.0	3.1 Purpose and Objectives	
	3.2 Field Investigation Procedures	
	3.2.1 Utility Mark out	
	3.2.2 Geophysical Survey	
	3.2.1 Soil Investigation	
	3.3 Quality Assurance/Quality Control Procedures	
	3.4 Sample Handling/Chain of Custody	
	3.5 Decontamination and Investigation-Derived Material Handling Procedures	
4.0	PHASE II INVESTIGATION RESULTS	
	4.1 Site Conditions	
	4.1.1 Lithology	
	4.2 Geophysical Investigation Results	
	4.3 Soil Analytical Results	
	4.3.1 Volatile Organic Compounds	
	4.3.2 Semi-Volatile Organic Compounds	
	4.3.3 Metals and Hexavalent Chromium	13
	4.3.4 PCBs, Pesticides and Herbicides	14
5.0	CONCLUSIONS	15
	5.1 Geophysical Investigation Results	15
	5.2 Soil	15
	5.3 Groundwater	16
6.0	REFERENCES	17
List d	of Figures	
	1 Site location map	
	2 Site plan and soil and groundwater sampling locations	

List of Tables

- 1 Summary of soil analytical results
- 2 Summary of groundwater analytical results

UG

List of Appendices

Appendix A	Geophysical Investigation Report
Appendix B	Soil Boring Logs
Appendix C	Laboratory Analytical Report

1.0 INTRODUCTION

State Center Parcel G Master Tenant LLC contracted Urban Green Environmental LLC (Urban Green) to perform a Supplemental Phase II Environmental Site Assessment (ESA) investigation of the State Center Property – Parcel G located at 900 North Eutaw Street in Baltimore, Maryland.

The objective of this investigation was to provide an evaluation of the recognized environmental concerns (RECs) as identified in the *Phase I Environmental Site Assessment Report* prepared by Earth Resources Management (ERM), Inc. and dated March 2007 (ERM 2007) and in the most recent *Phase I Environmental Site Assessment Report Update* prepared by Urban Green Environmental, LLC and dated September 2010 (UG 2010a) and to provide additional site characterization information to support a future application of the Site into the Maryland Voluntary Cleanup Program (VCP).

The findings of this Supplemental Phase II ESA are based solely on the data obtained and reviewed as part of this investigation, including observations and conditions that existed at the time of the field investigative activities performed in July and August 2010. Information provided by third parties is assumed to be accurate and complete.

This report was prepared for State Center Parcel G Master Tenant LLC by Urban Green Environmental, LLC and is based in part on third party information not within the control of State Center Parcel G Master Tenant LLC or Urban Green Environmental, LLC. While it is believed that the third party information contained herein will be reliable under the conditions and subject to the limitations set forth herein, neither State Center Parcel G Master Tenant LLC nor Urban Green Environmental, LLC master Tenant LLC nor Urban Green Environmental, LLC master Tenant LLC nor Urban Green Environmental, LLC guarantee the accuracy thereof.

2.0 SITE BACKGROUND

2.1 Site Location and Description

The approximate 2.74-acre State Center Property-Parcel G is located at 900 North Eutaw Street on the southwestern corner of the Maryland State Center complex located in Baltimore, Maryland. The Site is not currently developed with buildings; Site improvements are limited to surface level asphalt paved parking areas which cover the majority of the Site and a small landscaped border along the Site perimeter. According to information on-file with the Maryland Department of Assessment and Taxation, the Site is identified as Block 0459, Lot 3 and is currently owned by the State of Maryland.

A Site location map is attached as Figure 1; a Site plan is attached as Figure 2.

The Site is not currently serviced with municipal water and sewer; however, municipal water and sewer are available in the area of the Site. The Site is serviced with below-grade electric (paved parking lot lights) and stormwater (municipal stormwater drains were observed throughout the Site). Municipal water and sewer are provided to the Site area by the City of Baltimore; electric utilities are provided by BGE.

The Site is located in a densely developed, mixed use section of the City of Baltimore, Maryland. Surrounding properties include North Eutaw Street to the northeast, beyond which are additional Maryland State Center commercial buildings, West Preston Street to the northwest, beyond which is an asphalt paved parking lot, Martin Luther King Boulevard to the southeast, beyond which are commercial buildings, and Madison Avenue to the southwest, beyond which are commercial office buildings and a residential complex, McCulloh Homes.

2.2 Site History

Based on historic records and the prior environmental site assessment reports, the Site was developed into the current use (surface level paved parking) circa 1958, at which time the State of Maryland purchased the property for the development of the State Center complex. Prior to the current Site development, the property appears to have been improved with approximately 90 to 100 structures identified primarily as residential dwellings (rowhomes) and retail stores.

It is noteworthy, that circa 1930 to 1958, a gasoline filling station appears to have been located on the northeast corner of the Site, from the 1930s to the 1950s, a gasoline filling station is noted on the southeast corner of the property and from the early 1900s to the early 1950s, a bakehouse/candy kitchen is noted in the central portion of the property. In addition, a former tailor/cleaning facility and former laundry are suspected to have been located proximate to the bakehouse and on the southwest corner of the property circa 1920 and 1925 to 1942, respectively.

2.3 Environmental Setting

2.3.1 Topography

According to the U.S. Geological Survey (USGS) topographic map of Baltimore West, Maryland (1953, revised 1966/1974) Site elevation is relatively flat at approximately 135 feet (ft) above mean sea level. In general, the overall topographic trend of the subject property slopes very gently to the south/southeast. No streams or surface water bodies were observed on-Site. The nearest surface water body, the Jones Falls, is located approximately 2,000 feet east of the Site.

2.3.2 Geology and Lithology

According to the EDR database report and the 1998 Soil Survey of City of Baltimore, Maryland, the Site is underlain by soils of the Urban Land Complex. The 1998 Soil Survey text defines the Urban Land Complex as an area where more than 80% of the surface is covered by asphalt, concrete, buildings, or other impervious structures.

On-site conditions were observed to be consistent with the above. Specifically, overburden soil at the Site was observed to consist of fill materials, underlain primarily by medium to fine sand, and some silty sand and gravel to the maximum drilling depth of 24 feet below grade.

No visual or olfactory evidence of a release, such as a chemical odor or staining was observed throughout the drilling activities. Further, results of field screening for evidence of total volatile organic compounds (VOCs) using a photoionization detector indicated background readings (0.0 parts per million).

2.4 **Prior Environmental Investigations**

Phase I Environmental Site Assessment Report, State Center, Baltimore, Maryland, prepared by ERM and dated March 2007.

The scope of work of the ERM 2007 Phase I ESA consisted of a visual Site inspection and review of available historic and regulatory information for the property and surrounding State Center parcels. At the time of the ERM 2007 Phase I ESA, the Site was improved with the existing surface level asphalt paved parking area and was owned and operated by the State of Maryland.

The ERM report noted that the Site parcel was reportedly developed circa 1958, at which time the State of Maryland purchased the properties for development of the State Center. It was also noted in the Phase I ESA, that two historic fires, which occurred in 1904 and 1933, reportedly destroyed much of the Site parcel.

No evidence of hazardous material use, handling or generation were identified within the ERM 2007 Phase I ESA for the Site, further, no visual evidence of bulk storage, such as ASTs or USTs was identified. As identified in the March 2007 Phase I ESA, the results of the Phase I ESA did not indicate evidence of significant environmental concerns associated with the subject property.

Final Limited Phase II Environmental Site Assessments, State Center, Baltimore, Maryland, prepared by Urban Green Environmental, LLC and dated October 2009.

In October 2009, Urban Green Environmental, LLC completed a Limited Phase II Environmental Site Assessment for the Site (Parcel G) and the nearby State Center Properties, Parcels C and I2. The purpose of the assessment was to further evaluate environmental conditions identified within the prior Phase I ESA (ERM 2007) and to provide general site characterization of soil and/or groundwater at the State Center properties.

The scope of work of the Urban Green investigation consisted of the advancement of two soil borings on the State Center Property – Parcel G (SB-1/TW-1 and SB-2) and five soil borings at off-Site locations. Soil boring SB-1 and SB-2 were advanced to depths of 32 feet below grade and 20 feet below grade respectively. Further, at soil boring location SB-1, the soil boring was completed as a temporary groundwater monitoring well (groundwater was encountered at 31.5 feet below grade in soil boring SB-2. It is noteworthy, that the locations of soil borings SB-1 and SB-2 correspond with the proximate historic locations of the gasoline filling station on the northeast corner of the property and the suspect laundry located on the southwest corner of the Site.

Surface and subsurface soil samples were collected from each sampling location and field screened for volatile organic compounds (VOCs). Further, surface soil samples were submitted for analysis of polycyclic aromatic hydrocarbons (PAHs) and priority pollutant metals; subsurface soil samples (collected from depths of 4 to 5 feet below grade) were submitted for laboratory analysis of VOCs, PAHs, and priority pollutant metals. Prior soil boring locations are presented on the attached Figure 2; a summary of the laboratory analytical results is included on the attached Table 1.

In summary, based on field screening results, visual and olfactory observations, no evidence of a release of petroleum products or hazardous materials were observed throughout the drilling activities. Further, no concentrations of VOCs, PAHs, and/or priority pollutant metals were reported above the current applicable MDE Cleanup Standards for Residential Soil and/or background standards. Lastly, no detectable concentrations of VOCs were reported in groundwater collected from soil boring SB-1/TW-1.

3.0 PHASE II INVESTIGATION METHODOLOGY

3.1 **Purpose and Objectives**

The goal of the Supplemental Phase II investigation was to provide the environmental due diligence services associated with the State Center Property – Parcel G to satisfy the initial due diligence elements of the Maryland Voluntary Cleanup Program (VCP). The scope of work has also been updated based on a June 30, 2010 meeting with the Maryland Department of the Environment (MDE) VCP and discussions with the MDE VCP following receipt of the initial laboratory analytical results in August 2010. As indicated within the VCP pre-application meeting, the MDE VCP indicated that additional Phase II investigation support would be required to support the VCP applications for the State Center Property – Parcel G. Based on the results of the initial October 2009 investigation (UG 2009), Parcel G would likely qualify for a NFRD; however additional site characterization, including a geophysical survey proximate to the former filling stations and bakehouse, and additional soil and groundwater sampling would be required.

Toward that end, the following elements were included within this investigation to satisfy the MDE VCP requirements for the parcel.

- Completion of geophysical surveys proximate to the former gasoline filling stations (northeast and southeast corners of the Site) and the former bakehouse/candy kitchen located on the central portion of the Site.
- Advancement of five soil borings (SB-8 through SB-11A) throughout the Site for site characterization; one soil boring (SB-9) located on the southeastern corner of the Site was intended to be completed as a groundwater monitoring well. Refusal was encountered within this soil boring at 24 feet below grade (ft bg). Urban Green installed a temporary well point within the soil boring; however no groundwater was observed to collect within eight hours.
- Field screening of soil samples (two foot intervals) from each soil boring for the presence of total volatile organic compounds.
- Collection of discrete surface and subsurface soil samples from select soil boring; fixed laboratory analysis of the select soil samples for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), priority pollutant (PPL) metals, hexavalent chromium, polychlorinated biphenyls (PCBs), and/or pesticides/herbicides.

In addition, following completion of the above work tasks, elevated concentrations of SVOCs were reported in surface soil collected from soil boring SB-10A (former bakehouse); therefore an additional six shallow soil borings (SB-A through SB-F) were advanced in the area surrounding the former soil boring SB-10A to further evaluate SVOCs in surface soil in this area. One surface soil sample was collected from each shallow soil boring and submitted for laboratory analysis of SVOCs and PPL Metals.

The work tasks and associated field sampling activities described below were performed in general accordance with our proposal executed August 12, 2010, the *MDE Voluntary Cleanup Program Guidance Document* (MDE 2006) and the *State of Maryland Department of the Environment Cleanup Standards for Soil and Groundwater, Interim Final Guidance, Update No. 2.1* (MDE 2008).

3.2 Field Investigation Procedures

Fieldwork for the Phase II ESA was conducted on July 11 and 31 and September 8, 2010. The following report sections summarize the field sampling and laboratory analytical methodologies implemented during the field investigation.

3.2.1 Utility Mark out

Prior to initiating field activities, Urban Green coordinated with MissUtility and a private utility mark out subcontractor, to complete the required dig permit and obtain utility clearance for the Site investigation areas. In addition, the Urban Green engineer conducted a Site visit to confirm the proposed soil boring locations and below grade utility markings.

3.2.2 Geophysical Survey

On July 11, 2010, geophysical surveys were conducted in the areas of suspect former gasoline filling station areas and the former bakehouse/candy kitchen via an electromagnetic survey, magnetic survey, and ground penetrating radar. Geophysical survey services were performed by Bucks Geophysical Corporation of Plumsteadville, Pennsylvania.

The Geonics EM31 Terrain Conductivity Meter, oriented in the vertical dipole mode was utilized for the electromagnetic survey. This instrument measures the electrical conductivity of the ground, by inducing a current into the ground that creates secondary magnetic fields that are then detected by the instrument. The predicted response would be conductivities elevated above background across areas of a suspect UST or anomalies. Two sets of measurements are made by the instrument and consist of conductivity readings (quadrature phase) and inphase readings that are particularly sensitive to buried metallic objects. In the vertical dipole mode the instrument has an approximate depth of penetration of 16 feet below grade (carried at shoulder height).

Ground penetrating radar (GPR) data was collected using the GSSI SIR3000 digital radar unit. GPR uses radar pulses to image the subsurface of the Site. The depth range of GPR is limited by the electrical conductivity of the ground, and the transmitting frequency. As conductivity increases, the penetration depth decreases. As such, subsurface materials, such as concrete, reinforced concrete or metallic debris may reduce the effective penetration depth. The maximum depth of penetration was approximately two to four feet below grade.

The GEM Systems, Model GSM-19G magnetomer, was utilized for the magnetic survey. This instrument is used to measure the total geomagnetic field at a particular location, via three

components, the main field, the external field, and local variation. Local variations are typically attributable to anomalies near the surface such as buried metal objects or above ground objects containing metallic substance.

A spatial reference grid was marked within the designated geophysical area in order to reference each of the above instrument's location during the survey and for future reference. Baselines were established in the area surveyed, and marked every 5 ft to establish references for traverses. A grid was then laid out perpendicular to each baseline at separations of 5 ft. The geophysical areas (designated Geophysical Areas No. 1, 2, and 3) covered an approximate 50 feet by 60 feet area (northeast corner former filling station), 100 feet by 100 feet (southeast corner former filling station), and 50 feet by 50 feet (former bakehouse/candy kitchen). The geophysical survey areas are depicted on Figure 2; a copy of the geophysical survey data report is included as Appendix A.

3.2.1 Soil Investigation

On July 31, 2010, under the supervision of the Urban Green Engineer, five soil borings were advanced at the Site. Soil borings were advanced from grade using truck-mounted direct push technology (Geoprobe). Drilling services were performed by Green Services, Inc. of Bel Air, Maryland. The direct push technology method utilizes a two-inch inner diameter, four foot long, stainless steel sampler lined with a dedicated high-density polyethylene (HDPE) liner. The HDPE-lined stainless steel sampler is hydraulically driven into the subsurface for soil core retrieval. Soil borings were advanced to a maximum depth of 24 feet below grade (ft bg). In addition, on September 8, 2010, six soil borings (SB-A through SB-F) were advanced at the Site by the Urban Green Environmental Technician using a hand auger.

A summary of the soil borings is provided below; soil boring locations are also provided on Figure 2.

- *SB-8 and SB-9 Historic gasoline filling station:* Soil boring SB-8 was advanced to a depth of approximately 18 ft bg (refusal); soil boring SB-9 was advanced to a depth of 24 feet below grade (refusal). No groundwater was encountered in either soil boring.
- *SB-10A and SB-11A Former Bakehouse/Candy Kitchen and Former Tailor/Cleaning:* Soil boring SB-10A was advanced to a depth of 16 ft bg; soil boring SB-11A was advanced to a depth of 16 ft bg. No groundwater was encountered.
- *SB-12 Historic gasoline filling station:* Soil boring SB-12 was advanced to refusal (20 ft bg). No groundwater was encountered.
- *SB-A through SB-F Site Characterization:* Soils borings SB-A through SB-F were advanced surrounding the former soil boring SB-10A to further evaluate SVOC concentrations in surface soil proximate to the former Bakehouse/Candy Kitchen. Soil borings SB-A through SB-F were advanced to depths of approximately three ft bg.

Immediately following the direct push sampler retrieval, the HDPE sample liner was opened by the Urban Green Engineer, and screened, at approximate two foot intervals for evidence of total VOCs using a photoionization detector (PID). Discrete grab soil samples were then collected directly from the sample core liner using disposable, dedicated aseptic sampling devices.

A log of field activities, including photographs and logs of the continuous soil borings were maintained throughout the field activities. Soil boring logs, including soil lithology, recovery and field observations are provided in Appendix B.

Soil borings were advanced to a maximum depth of 24 ft bg. Bedrock was not observed to the maximum drilling depth of 24 ft bg; groundwater was not observed.

Select soil samples were collected from each soil boring and submitted for laboratory analysis of VOCs via USEPA Method 8260B; SVOCs via USEPA Method 8270C; PPL metals via USEPA Method 6020A; PCBs via USEPA Method 8082; and pesticide/herbicide analysis was performed via USEPA 8081A/8151A.

One surface and one subsurface soil sample was collected from soil borings SB-8 and SB-10A. Further, surface soil samples were collected from soil borings SB-A through SB-F. The above samples intervals were selected based on preliminary discussions with the MDE VCP regarding the existing site characterization data for the property.

Soil samples were collected with dedicated sampling equipment into new, clean sample containers. The soil samples were labeled with sample designation, date and time, and the required analyses. Soil samples were then placed on ice in a portable cooler prior to hand-delivery to Caliber Analytical Services in Towson, Maryland. Chain-of-Custody (COC) forms were maintained (and accompanied the samples in transit) to provide a record of samples from collection to analyses. A copy of the laboratory analytical report and associated COC is included in Appendix C.

3.3 Quality Assurance/Quality Control Procedures

QA/QC protocol covered general aspects of measurement systems design and implementation, including sampling methods, data handling, and QC measures employed. QA/QC procedures followed during the investigation included the use of dedicated sampling equipment for all sampling activities.

3.4 Sample Handling/Chain of Custody

Soil samples collected for laboratory analyses were recorded on soil boring logs and in the project field notes. Field notes will be kept at Urban Green on file for reference. Each sample collected during field activities was given a unique sample designation (Table 1). The sample identification (ID) was used to establish each discrete sampling point. The sample ID also was included on the

laboratory chain of custody as well as the bottle label. The interval (e.g. 0-1) identified following the soil boring identification in the following sections represents the discrete depth interval in feet below grade at which the soil sample was collected.

Following sample collection, containers were sealed and placed in a cooler with bagged ice and cooled to 4°C or less. The COC was placed in a plastic bag and taped to the inside of the cooler lid for submission to Phase Separation Science, Inc. Soil and groundwater samples were then hand-carried under strict COC procedures to Caliber Analytical Services in Towson, Maryland for analysis. Samples were analyzed with standard one week turn-around time from receipt of samples.

3.5 Decontamination and Investigation-Derived Material Handling Procedures

The primary objective of the decontamination process was to prevent the accidental introduction of potential contaminants to non-contaminated areas and/or samples. During field activities, a designated decontamination area was established and equipped with decontamination equipment (wash buckets, brushes, spray bottles, potable water, distilled water, towels, etc.) to adequately decontaminate the equipment used on-site. To the maximum extent possible, dedicated equipment was used at each media sample location. Specifically, the direct push sample tubes (macrocores) were lined with a HDPE liner. Further, disposable plastic bags were used to homogenize each soil sample (non-VOC analysis), as required for fixed laboratory analysis.

Sampling equipment that was not dedicated to one sample location was washed with a medicalgrade detergent wash, rinsed with distilled water and allowed to air dry.

Following completion of each soil boring, soil cuttings generated during sampling activities were placed directly down the soil boring. Sampling locations were finished at grade with a concrete slurry / bentonite and asphalt.

4.0 PHASE II INVESTIGATION RESULTS

4.1 Site Conditions

4.1.1 Lithology

Soil lithology at the Site consisted of fill materials, underlain primarily by medium to fine sand, and some silty sand and gravel to the maximum drilling depth of 24 feet below grade.

No visual or olfactory evidence of a release, such as a chemical odor or staining was observed throughout the drilling activities. Further, results of field screening for evidence of total volatile organic compounds (VOCs) using a photoionization detector indicated background readings (0.0 parts per million).

4.2 Geophysical Investigation Results

Results of the geophysical survey indicated the following:

Area 1 (northeast suspect filling station):	No anomalies, indicative of a remaining UST were identified; however several possible pipes and utilities were identified.
Area 2 (southeast suspect filling station):	Four possible pipes or tanks were identified; however it is noteworthy, that the geophysical survey results indicate that the anomalies are most likely below grade piping. Three anomalies were primarily identified along the existing storm water conduits; the remaining anomaly was also identified proximate to below grade piping and was less than three feet by five feet and is therefore not anticipated to be a UST associated with the former filling station.
Area 3 (former bakehouse/candy kitchen):	No anomalies, indicative of a remaining UST were identified; however several below grade anomalies, most likely indicative of fill/debris were identified.

A description of each subsurface anomaly, and associated contour maps of the grid areas are provided in Appendix A.

4.3 Soil Analytical Results

A summary of the laboratory analytical results for soil is presented in Table 1 and discussed below. The full laboratory analytical data reports are provided in Appendix C.

In total, 10 select soil samples were collected from varying depths within the designated sample locations and submitted for fixed laboratory analysis of VOCs, SVOCs, PPL Metals, PCBs, pesticides, and herbicides. For comparative purposes, the analytical results are herein compared with the MDE Cleanup Standards for Residential Soil.

4.3.1 Volatile Organic Compounds

Two subsurface samples (SB-8 4-5 and SB-10A 4-5) were submitted for fixed analysis of VOCs.

As shown in Table 1, no detectable concentrations of VOCs were reported in subsurface soil.

4.3.2 Semi-Volatile Organic Compounds

Ten soil samples (one surface soil and one subsurface soil sample from soil borings SB-8 and SB-10A and surface soil samples from soil borings SB-A through SB-F) were submitted for fixed analysis of SVOCs.

As shown in Table 1, with the exception of surface soil collected from soil boring SB-10A and SB-A through SB-F, no concentrations of SVOCs were reported in soil above the current applicable MDE Cleanup Standards for Residential Soil. Specifically, benzo(a)pyrene (up to 210 ug/kg), benzo(b)fluoranthene (up to 280 ug/kg), dibenz(a,h,)fluoranthene (up to 110 ug/kg) and indeno(1,2,3-c,d)pyrene (up to 240 ug/kg) were reported in soil at concentrations above the MDE Cleanup Standard for Residential Soil (22 ug/kg, 220 ug/kg, and 22 ug/kg, respectively).

4.3.3 Metals and Hexavalent Chromium

Six soil samples (SB-8 0-1, SB-8 4-5, SB-10A 0-1, SB-10A 4-5, SB-A 0-1, and SB-E 0-1) were submitted for fixed analysis of PPL Metals. In addition, soil samples SB-A 0-1 and SB-E 0-1 were further analyzed for hexavalent chromium.

With the exception of a single occurrence of lead (470 mg/kg) in soil boring SB-A, no concentrations of PPL metals were reported in surface soil above the MDE Cleanup Standards for Residential Soil. The current applicable MDE Cleanup Standard for lead is 400 mg/kg.

4.3.4 PCBs, Pesticides and Herbicides

Two select soil samples (SB-8 4-5 and SB-10A 4-5) were submitted for fixed laboratory analysis of PCBs, pesticides, and herbicides. No detectable concentrations of PCB congeners, pesticides or herbicides were reported.

5.0 CONCLUSIONS

The goal of the Supplemental Phase II investigation was to provide the environmental due diligence services associated with the State Center Property – Parcel G to satisfy the initial due diligence elements of the Maryland Voluntary Cleanup Program (VCP). The scope of work has also been updated based on a June 30, 2010 meeting with the Maryland Department of the Environment (MDE) VCP and discussions with the MDE VCP following receipt of the initial laboratory analytical results in August 2010. As indicated within the VCP pre-application meeting, the MDE VCP indicated that additional Phase II investigation support would be required to support the VCP applications for the State Center Property – Parcel G. Based on the results of the initial October 2009 investigation (UG 2009), Parcel G would likely qualify for a NFRD; however additional site characterization, including a geophysical survey proximate to the former filling stations and bakehouse, and additional soil and groundwater sampling would be required.

The scope of this investigation consisted of advancing 11 soil borings (SB-8 through SB-12 and SB-A through SB-F) at the Site. In general, soil boring locations were biased towards areas of concerns, including the historic use (filling stations, bakehouse/candy kitchen). Soil samples were collected from select soil boring and submitted for fixed laboratory analysis of VOCs, PAHs, PPL Metals, PCBs, pesticides, and herbicides.

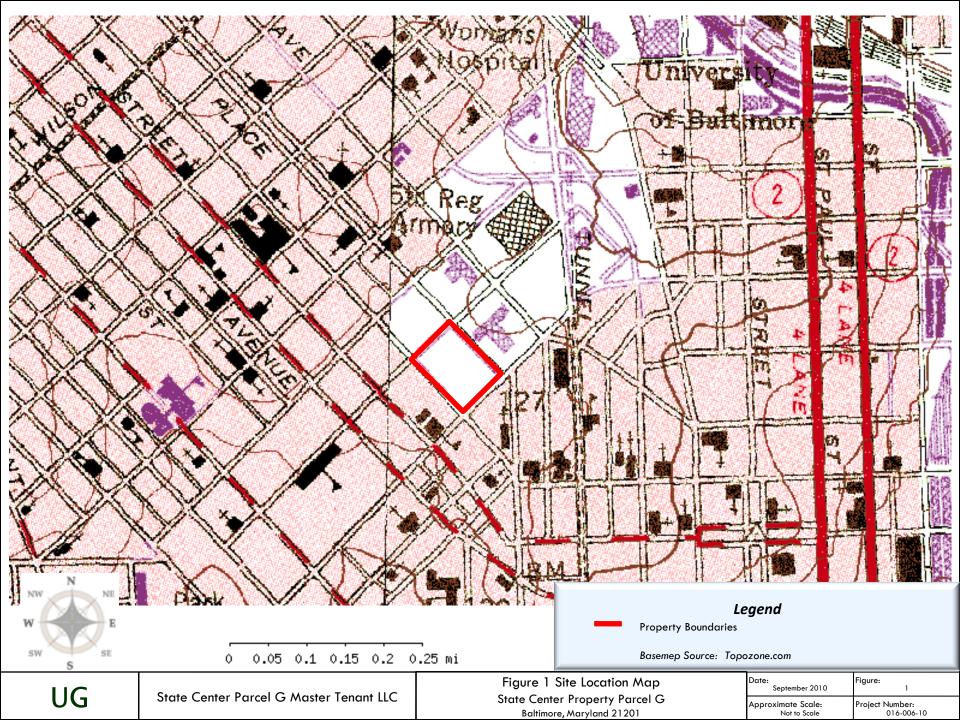
5.1 Geophysical Investigation Results

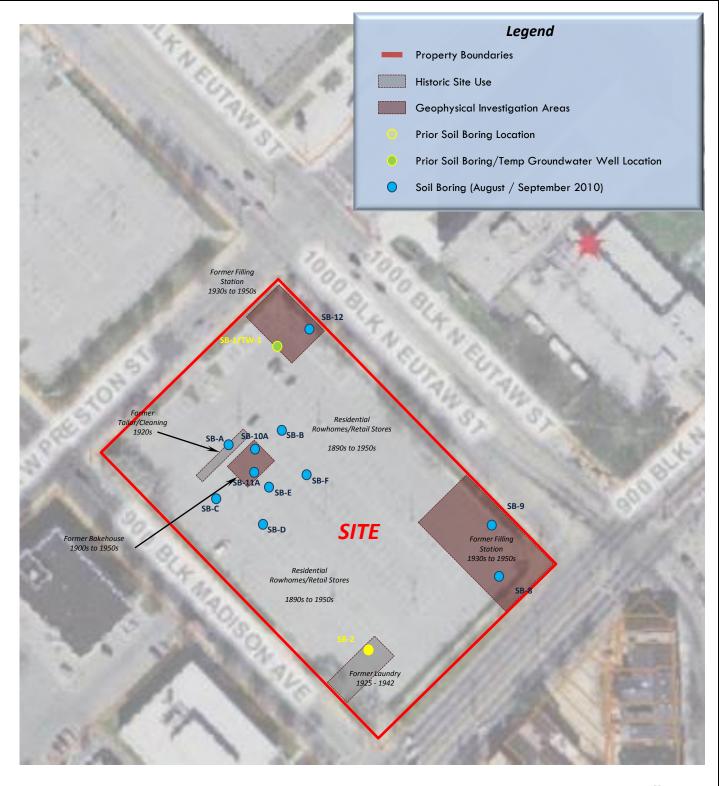
With the exception of several small anomalies located in Area 2 (southeast suspect former filling station), no anomalies, indicative of a remaining UST, were identified based on the results of the geophysical investigation. It is noteworthy, that the results for geophysical survey Area 2 indicated that the anomalies are most likely below grade piping. Three anomalies were primarily identified along the existing storm water conduits; the remaining anomaly was also identified proximate to below grade piping and was less than three feet by five feet and is therefore not anticipated to be a UST associated with the former filling station.

In addition, several below grade anomalies, most likely indicative of fill/debris were identified in geophysical survey Area 3 (former bakehouse/candy kitchen).

5.2 Soil

With the exception of lead and select SVOCs, no analytes were reported at concentrations in excess the currently applicable MDE Cleanup Standards for Residential soil. Specifically,


- Lead was reported in soil boring SB-A at a concentration of 470 mg/kg above the MDE Cleanup Standards for Residential Soil. The current applicable MDE Cleanup Standard for lead is 400 mg/kg.
- Select SVOCs were reported above the current applicable state cleanup standards in surface soil in and surrounding the former bakehouse/candy kitchen area.


5.3 Groundwater

No groundwater was collected as part of this recent supplemental phase II environmental site assessment. Specifically, Urban Green attempted to collect groundwater samples from both the southeastern area of the property. However, groundwater was not encountered to the maximum depth of 24 ft bg. It is noteworthy, that groundwater was encountered at a depth of 32 ft bg and sampled during the prior Limited Phase II Environmental Site Assessment (UG 2009). No concentrations of VOCs were reported in the groundwater sample collected from temporary well TW-1 above the current applicable MDE Cleanup Standards for Groundwater.

6.0 **REFERENCES**

- Environmental Resources Management, Inc. (ERM). 2007. *Phase I Environmental Site Assessment State Center, Baltimore, Maryland*. March.
- Maryland Department of the Environment (MDE). 2006. Voluntary Cleanup Program Guidance Document. March.
- MDE. 2008. State of Maryland Department of the Environment Cleanup Standards for Soil and Groundwater, Interim Final Guidance (Update No. 2.1). August.
- STV, Inc. (STV). 2009. Existing Electric/Conduit, Existing Sanitary, Existing Storm Drain, Existing Gas Plans. August.
- Urban Green Environmental, LLC (UG). 2009. *Final Limited Phase II Environmental Site Assessment Report, State Center Property.* October.
- UG. 2010. Draft Phase I Environmental Site Assessment Report Update, State Center Property Parcel G. September.

Basemap Source: mapquest.com

Site Plan	Date: September 2010	Figure: 2		
roperty Parcel G	Approximate Scale:	Project Number:		
aryland 21201	As Shown	016-006-10		

UG

State Center Parcel G Master Tenant LLC

Figure 2 State Center Pr Baltimore, Ma

Table 1 Summary of Soil Analytical Results Limited Phase II Environmental Site Assessment State Center Property -Parcel G, Baltimore, Maryland 21201

ANALYTE MDE Cleanup MDE Cleanup					Limited Phase II ESA (October 2009)			Limited Phase II ESA (August / September 2010)									
	Standard - Residential ⁽¹⁾	Standard - Non Residential ⁽¹⁾	ATC (2)	SB-1 0-1	SB-1 4-5	SB-2 0-1	SB-2 19-20	SB-8 0-1	SB-8 4-5	SB-10A 0-1	SB-10A 4-5	SB-A 0-1	SB-B 0-1	SB-C 0-1	SB-D 0-1	SB-E 0-1	SB-F 0-1
Pesticides (SW8081A / ug/kg)	NA	NA	NA	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	ND	Not analyzed	ND	Not analyzed					
Herbicides (SW8151A / ug/kg)	NA	NA	NA	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	ND	Not analyzed	ND	Not analyzed					
PCBs (SW8082 / mg/kg)	NA	NA	NA	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	ND	Not analyzed	ND	Not analyzed					
Priority Pollutant Metals (SW6020 / m	ig/kg)																
Antimony	3.1	41	6	< 2.5	< 2.6	< 1.9	< 2	< 2.1	< 2.6	< 2	< 2	< 2.2	Not analyzed	Not analyzed	Not analyzed	< 2.6	Not analyzed
Arsenic	0.43	1.9	3.6	1.7	0.63	1.1	< 0.4	0.89	1.2	2.2	3.4	2.2				2.4	
Beryllium	16	200	0.66	< 2.5	< 2.6	< 1.9	< 2	< 2.1	< 2.6	< 2	< 2	< 2.2				< 2.6	
Cadmium	3.9	51	0.73	< 2.5	< 2.6	< 1.9	< 2	< 2.1	< 2.6	< 2	< 2	< 2.2				< 2.6	
Chromium	23	310	28	25	3.1	21	< 2	16	14	12	16	18				22	
												< 2.7				< 2.7	
Copper	310	4,100	12	31	< 2.6	12	< 2	5.5	2.7	12	11	10				12	
Lead	400	1000	45	21	< 2.6	2.6	< 2	7.3	< 2.6	100	43	470				400	
Mercury			0.51	< 0.099	< 0.1	< 0.076	< 0.081	0.12	< 0.1	0.25	0.27	0.25				0.32	
Nickel	160	2,000	13	7.9	< 2.6	7.8	< 2	2.2	< 2.6	8.7	8	5.7				7.2	
Selenium	39	510	2.2	< 2.5	< 2.6	< 1.9	< 2	< 2.1	< 2.6	< 2	< 2	< 2.2				< 2.6	
Silver	39	510	0.94	< 2.5	< 2.6	< 1.9	< 2	< 2.1	< 2.6	< 2	< 2	< 2.2				< 2.6	
Thallium	0.55	7.2	3.9	< 2	< 2	< 1.5	< 1.6	< 2.1	< 2.6	< 2	< 2	< 2.2				< 2.6	
Zinc	2,300	31,000	63	38	31	42	< 2	32	5.7	37	31	100				97	
Semivolatile Organic Compounds / Po	lycyclic Aromatic Hydrod	arbons (SW8270C / ug/	/kg) ⁽³⁾														
Acenaphthene	470,000	6,100,000	NA	6	< 5	< 5	< 5	< 5	< 5	< 5	< 5	13	< 5	8	58	34	9
Acenaphthylene	470,000	6,100,000	NA	< 5	< 5	< 5	< 5	< 5	< 5	8	< 5	10	11	10	63	34	8
Anthracene	2,300,000	31,000,000	NA	< 5	< 5	32	< 5	< 5	< 5	8	< 5	41	16	28	42	34	23
Benzo(a)anthracene	220	3,900	NA	9	< 5	17	< 5	< 5	< 5	37	13	180	96	140	210	150	170
Benzo(a)pyrene	22	390	NA	8	< 5	20	< 5	< 5	< 5	56	17	180	100	150	210	170	190
Benzo(b)fluoranthene	220	3,900	NA	16	< 5	42	< 5	< 5	< 5	99	29	250	140	210	280	220	260
Benzo(g,h,i)perylene	230,000	3,100,000	NA	7	< 5	15	< 5	< 5	< 5	30	13	190	120	170	270	240	250
Benzo(k)fluoranthene	2,200	39,000	NA	< 5	< 5	< 5	< 5	< 5	< 5	42	13	100	53	84	130	91	100
Chrysene	22,000	390,000	NA	< 5	< 5	21	< 5	< 5	< 5	52	19	200	120	170	240	180	220
Dibenz(a,h)anthracene	22	390	NA	< 5	< 5	9	< 5	< 5	< 5	13	5	52	35	46	100	110	62
Fluoranthene	310,000	4,100,000	NA	12	< 5	23	< 5	< 5	< 5	63	23	410	210	290	400	270	390
Fluorene	310,000	4,100,000	NA	9	< 5	< 5	< 5	< 5	< 5	< 5	< 5	13	5	12	47	28	9
Indeno(1,2,3-c,d)Pyrene	220	3,900	NA	6	< 5	10	< 5	< 5	< 5	25	12	170	110	140	240	220	210
2-Methylnaphthalene	31,000	410,000	NA	9	< 5	5	< 5	< 5	< 5	8	< 5	22	12	22	64	45	22
Naphthalene	160,000	4,100,000	NA	< 5	< 5	< 5	< 5	< 5	< 5	6	< 5	12	13	11	35	31	12
Phenanthrene	2,300,000	31,000,000	NA	45	< 5	27	< 5	< 5	< 5	34	19	240	100	130	160	120	180
Pyrene	230,000	3,100,000	NA	26	< 5	61	< 5	< 5	< 5	62	20	350	180	280	360	260	360
Volatile Organic Compounds (SW8260	B / ug/kg)			Not analyzed	ND	Not analyzed	ND	Not analyzed	ND	Not analyzed	ND	Not analyzed					
Total Petroleum Hydrocarbons (SW80	15C / mg/kg)			Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed
Gasoline Range Organics	230	620	NA														
Diesel Range Organics	230	620	NA														

Notes / Superscripts

Only detected analytes are shown.

(1) State of Maryland Department of the Environment Cleanup Standards for Soil and Groundwater, Interim Final Guidance, Update No. 2.1 (MDE 2008).

(2) Anticipated Typical Concentrations (ATCs) represent reference or background levels published by the MDE for the Site area.

(3) Soil samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) in October 2009 and semivolatile organic compounds (SVOCs) in August 2010.

ND - Analyte(s) not detected in sample.

Not Analyzed - sample not analyzed for select parameters.

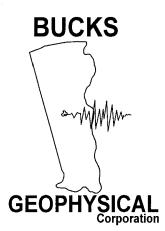
Table 2 Summary of Groundwater Analytical ResultsLimited Phase II Environmental Site AssessmentState Center Property - Parcels G, C, and I2, Baltimore, Maryland 21201

ANALYTE	MDE Cleanup Standard - Groundwater ⁽¹⁾	PARCEL G TW-1	PARCEL C TW-5	
Volatile Organic Compounds (SW8260B / ug/l)				
tert-Amyl methyl ether (TAME)		ND	2	
Methyl T-butyl Ether (MTBE)	20	ND	15	

Notes / Superscripts

Only detected analytes are shown.

(1) State of Maryland Department of the Environment Cleanup Standards for Soil and Groundwater, Interim Final Guidance, Update No. 2.1 (MDE 2008).


ND - Analyte not detected in sample

APPENDIX A

GEOPHYSICAL INVESTIGATION REPORT

July 27, 2010

Denise Sullivan Urban Green Environmental, LLC. 1700 Beason Street Baltimore, MD 21230

REPORT: GEOPHYSICAL INVESTIGATION State Center Property Parcels Baltimore, MD

Dear Ms. Sullivan:

We are pleased to present our report of the geophysical investigation for the State Center Properties located in Baltimore, MD. The investigation was performed on July 11, 2010.

If you have any questions concerning this report please contact us at 215-345-7193. We look forward to working with you in the future.

Respectfully submitted, BUCKS GEOPHYSICAL CORPORATION

matching. m. mille

Matthew J. McMillen Geophysicist

1) INTRODUCTION AND PURPOSE

The property located at 900 North Eutaw Street and a property located at 101 West Preston Street in Baltimore, MD were the locations of this geophysical survey. The survey was conducted on three areas of the North Eutaw Street property and a portion of the West Preston Street property that were accessible to the geophysical instrumentation.

The purpose of this geophysical survey was to locate possible tanks and to investigate subsurface conditions. Electromagnetic terrain conductivity (EM-31), ground penetrating radar (GPR), and magnetometry (MAG) were employed for the survey. Brief descriptions of each technique are given in Appendix A.

2) REFERENCE GRID

A reference grid was established to accurately locate the geophysical stations using a 300foot measuring tape and paint. The survey lines were spaced 2.5 feet and 5 feet apart and were marked every 5 feet or 25 feet. Figures 1, 6, 11, and 16 shows the locations of the survey lines and the extent of the geophysical coverage.

3) GEOPHYSICAL METHODOLOGY

3a) Electromagnetic Survey

Electromagnetic data were gathered using a Geonics EM-31 Terrain Conductivity Meter oriented in the vertical dipole mode which obtains subsurface data to an effective depth of about 16 feet.

Data were recorded on a Model 720 digital recorder. Both conductivity data (mmhos/m) and in-phase data (parts per thousand), along with the line number, and station location were recorded at each station. Field observations were noted in a field book. EM-31 data were collected at 0.5 second intervals (approximately every 2.5 feet) along survey lines spaced 5 feet apart. The data was downloaded to a laptop computer for processing and generation of conductivity contour map.

3b) Ground Penetrating Radar Survey

Ground penetrating radar data were collected using a GSSI SIR3000 digital radar unit with 400 mhz antenna. Data were collected continuously on survey lines spaced 2.5 feet apart and orientated perpendicular to each other. Depth of investigation was approximately 2 - 4 feet with this antenna due to subsurface conditions.

3c) Magnetic Survey

Magnetic data were collected using a GEM Systems GSM-19G magnetometer. Magnetic data were collected at 0.5 sec intervals (approximately every 2.5 feet) along survey lines spaced 5 feet apart. Data was downloaded to a laptop computer for processing and generation of magnetic contour maps.

4) INTERPRETATION

AREA 1

Area 1 is located on the northeast corner of the parking lot. The geophysical survey of this area detected an anomalous area and several possible pipes or utilities.

The anomalous area was detected at approximately 2+19N to 2+31N, 1+90E to 1+96E. The cause of this area is unknown but may be a possible pipe or foundation. Figure 3 shows the location of this area.

Figure 3 shows the locations of the possible pipes or utilities detected by the survey.

AREA 2

Area 2 is located on the southeast corner of the parking lot. The geophysical survey of this area detected four possible pipes or tanks, six anomalous areas, a conductivity high, a magnetic high, a possible subsurface layer, and numerous possible pipes or utilities.

Four possible pipes or tanks were detected by the geophysical survey at approximately:

1) 1+56N to 1+60N, 1+87E to 1+94E 2) 1+61N to 1+64N, 1+89E to 1+94E 3) 1+91N to 1+94N, 1+34E to 1+41E 4) 2+21N to 2+26N, 1+85E to 1+93E

These areas are most likely pipes but could be tanks. Figure 8 shows the locations of these areas.

Six anomalous areas were detected by the geophysical survey at approximately:

1) 1+20N to 1+35N, 1+80E to 1+92E 2) 1+42N to 1+49N, 1+80E to 1+84E 3) 2+00N to 2+18N, 1+21E to 1+29E 4) 2+22N to 2+33N, 1+50E to 1+61E 5) 2+31N to 2+41N, 1+26E to 1+41E 6) 2+36N to 2+42N, 1+61E to 1+68E

The causes of these areas are unknown but could be buried debris, concrete, etc.. Figure 8 shows the locations of these areas.

A conductivity high was detected by the survey at approximately 1+70N to 2+17N, 1+53E to 1+89E. The cause of this area is unknown but may be caused by subsurface material with a higher conductivity than the surrounding material such as clay or slag. Figure 8 shows the location of this area.

page - 3 -

A magnetic high was detected by the survey at approximately 2+54N to 2+75N, 1+87E to 1+92E. This area may be caused by a foundation wall, buried metal, or interference. Figure 8 shows the location of this area.

A possible subsurface layer was detected by the survey at approximately 1+40N to 1+57N, 1+29E to 1+44E. This may be caused by buried concrete slab or a layer of pavement. See Figure 8 for the location of this area.

Figure 8 shows the locations of the possible pipes or utilities detected by the survey.

AREA 3

Area 3 is located north central part of the parking lot. The geophysical survey of this area detected an area of possible buried debris, an area of disturbed conductivity, a possible subsurface layer, and several possible pipes or utilities.

The area of possible buried debris was detected at approximately 1+25N to 1+43N, 1+11E to 1+28E. Figure 13 shows the location of this area.

An area of disturbed conductivity was detected by the survey at approximately 1+09N to 1+45N, 1+00E to 1+47E. This may be caused by a demolished building. See Figure 13 for the location of this area.

A possible subsurface layer was detected at approximately 1+19N to 1+40N, 1+34E to 1+45E. This may be caused by a buried slab or pavement. Figure 13 shows the location of this area.

See Figure 13 for the locations of the possible pipes or utilities detected in this area.

AREA 4

Area 4 is located along North Howard Street. The geophysical survey of this area detected an anomalous area, a magnetic high, two magnetic lows, a possible utility box, and several possible pipes or utilities.

The anomalous area was detected by the survey at approximately 1+24N to 1+34N, 1+25E to 1+30E. The cause of this area is unknown. Figure 18 shows the location of this area.

A magnetic high was detected at approximately 1+25N to 1+36N, 1+09E to 1+13E. The cause of this area is unknown but may be cultural interference. Figure 18 shows the location of this area.

Two magnetic lows were detected by the survey at approximately:

1) 1+13N to 1+26N, 1+04E to 1+11E

2) 1+27N to 1+38N, 1+30E to 1+36E

The causes of these areas are unknown but could be cultural interference. Figure 18 shows the locations of these areas.

A possible utility box was detected at approximately 1+00N to 1+11N, 1+27E to 1+34E. This is related to the manhole cover located in this area. Figure 18 shows the location of this area.

See Figure 18 for the locations of the possible pipes or utilities detected by the survey.

5) CONCLUSIONS and RECOMMENDATIONS

The geophysical investigation of the State Center Property Parcels located in Baltimore, MD detected eight anomalous areas, four possible pipes or tanks, one conductivity high, two magnetic highs, two magnetic lows, two possible subsurface layers, an area of possible buried debris, an area of disturbed conductivity, a possible utility box, and numerous possible pipes or utilities.

Eight anomalous areas were detected in the four areas. One area in Area 1, six areas in Area 2, and an area in Area 4. The causes of these areas are unknown. Further investigation using other means of these areas is recommended to determine the exact cause of each.

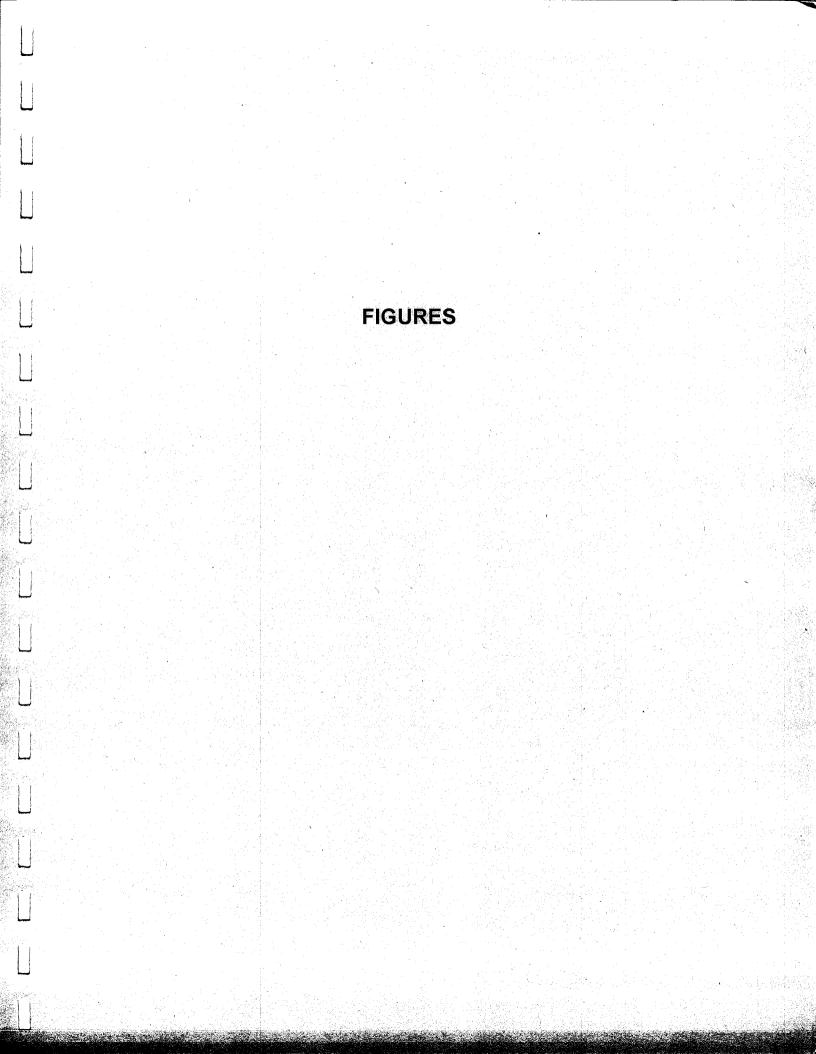
Four possible pipes or tanks were detected in Area 2. Further investigation using other means is recommended to determine the exact cause of each.

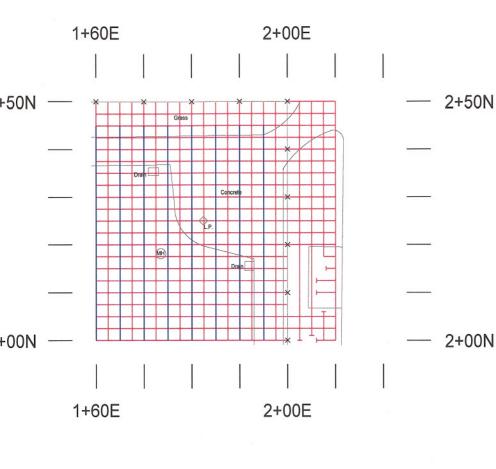
A conductivity high was detected in Area 2. Further investigation may be considered.

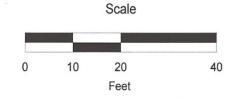
A magnetic high was detected in Area 2 and Area 4. The causes of the magnetic high in Area 4 may be cultural interference. Further investigation of both may be considered to determine the cause of each.

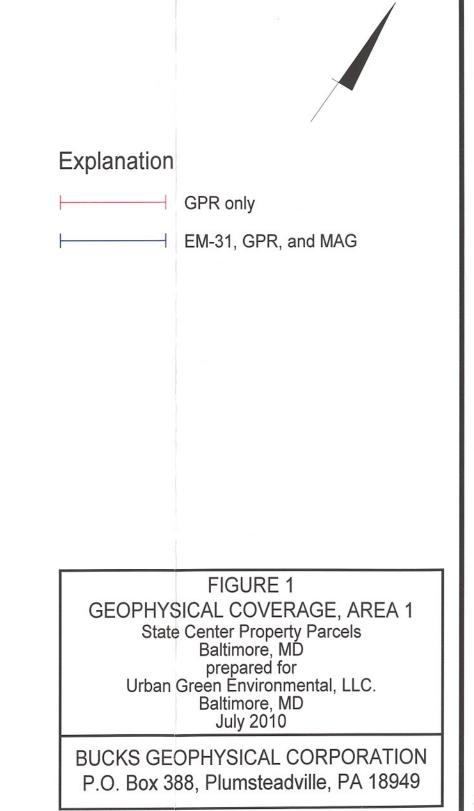
Two magnetic lows were detected in Area 4. These areas may be caused by cultural interference.

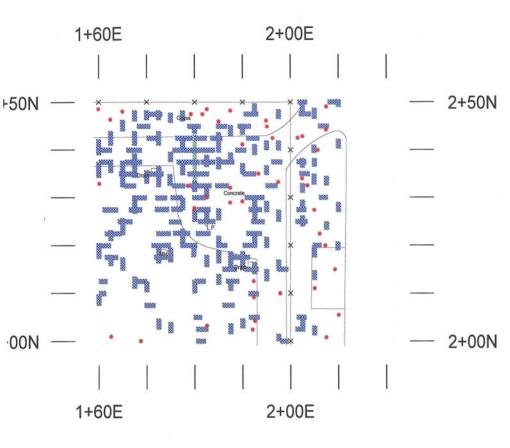
A possible subsurface layer was detected by the survey in Area 2 and Area 3.

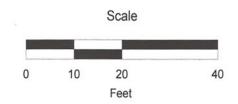

An area possible buried debris was detected in Area 3. Further investigation may be considered for this area.

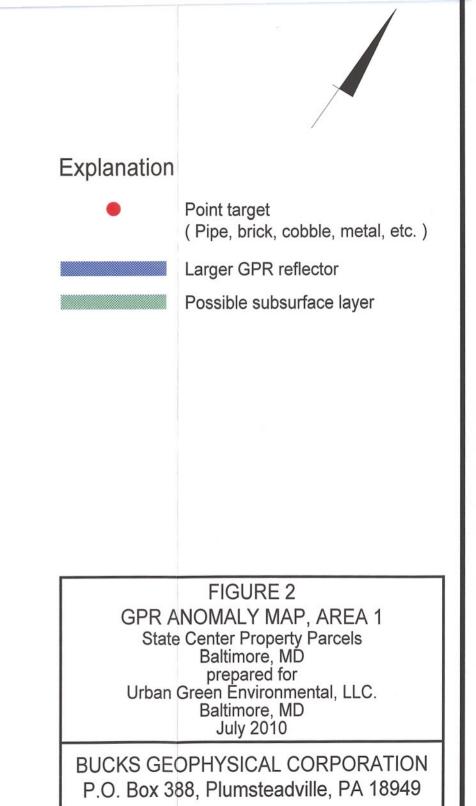

An area of disturbed conductivity was in Area 3. This may be caused by a demolished building.

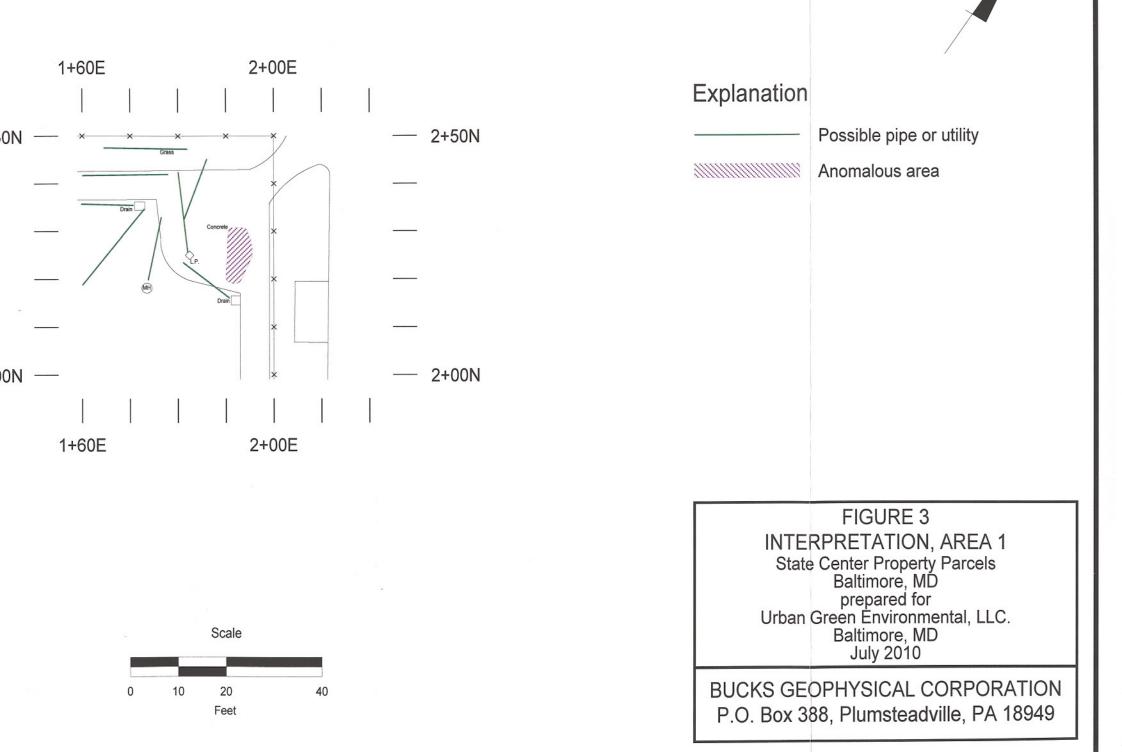

Depth of investigation for the GPR was limited due to site subsurface conditions.

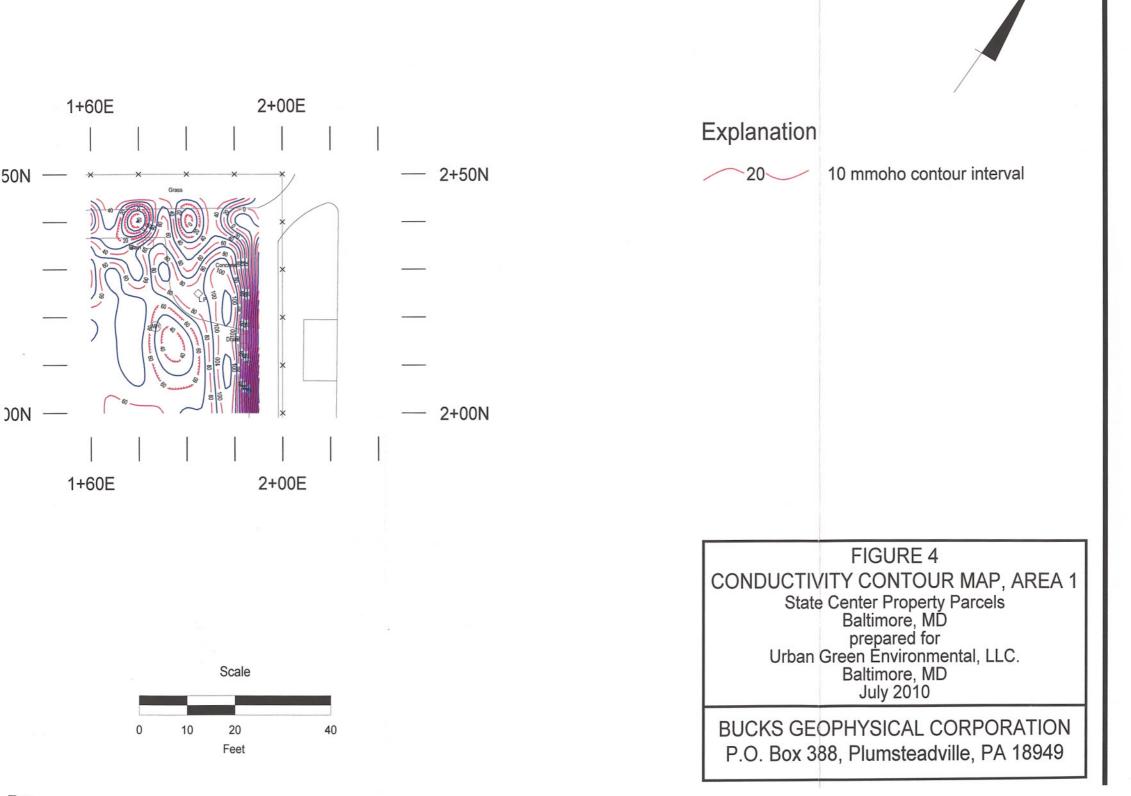

Not all objects or areas may have been detected by the geophysical survey due to subsurface conditions and equipment limitations.

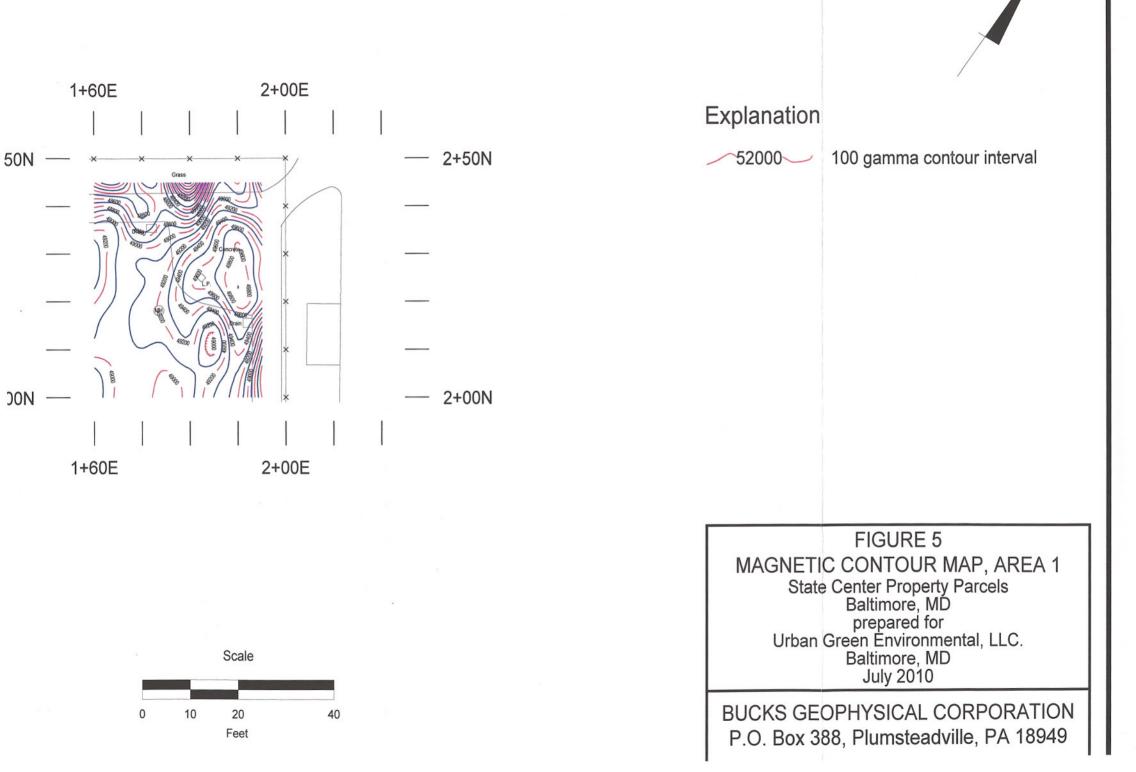

Figures 3, 8, 13, and 18 show the locations of all areas and objects detected by the geophysical survey.

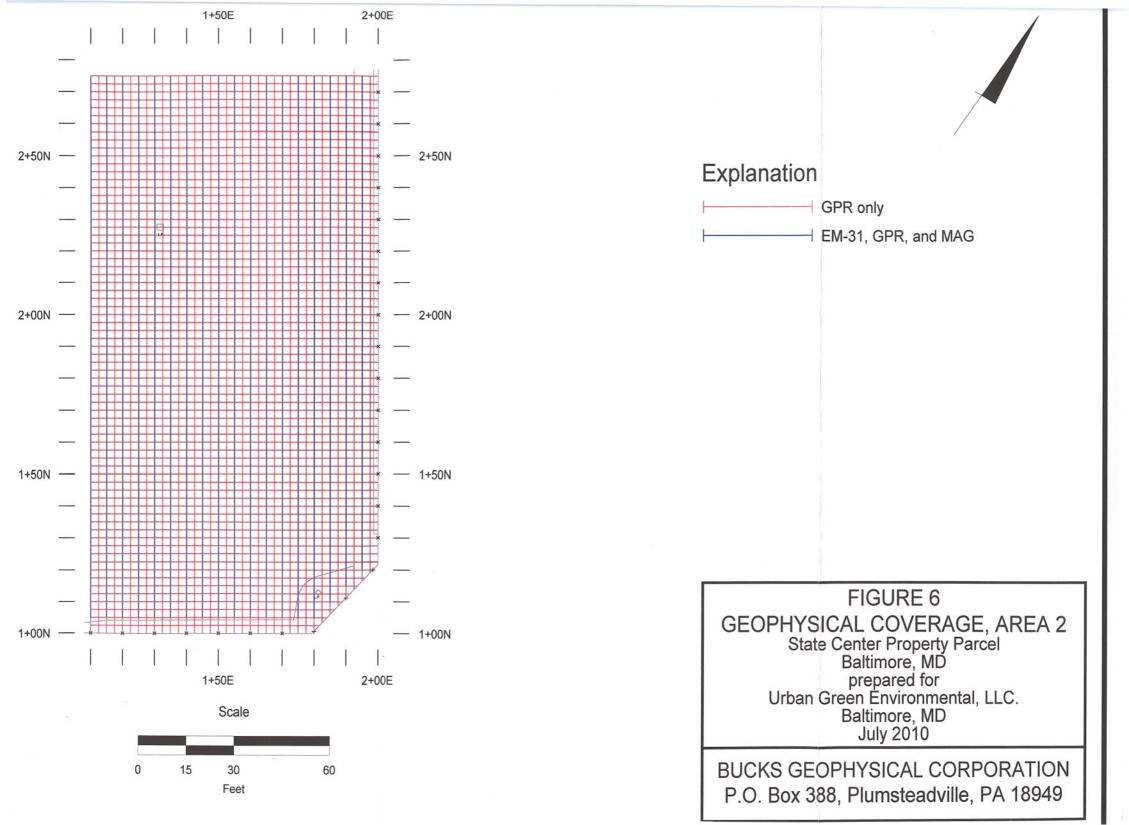


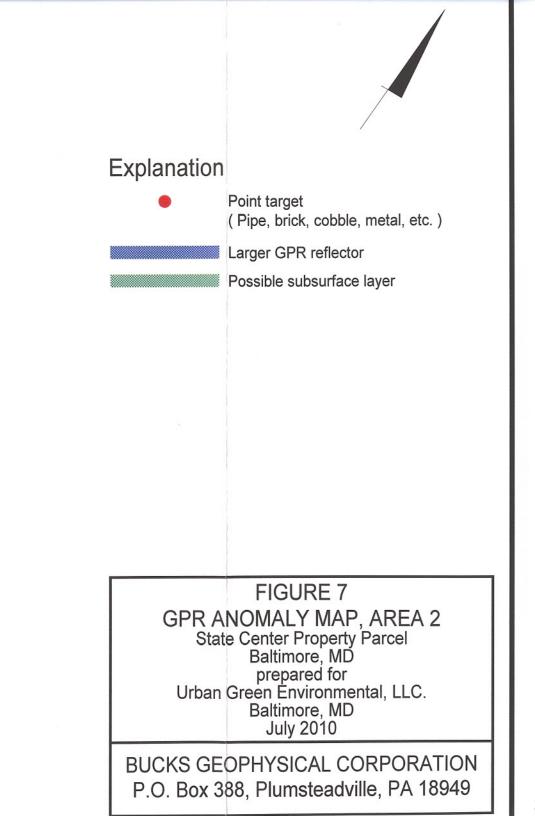


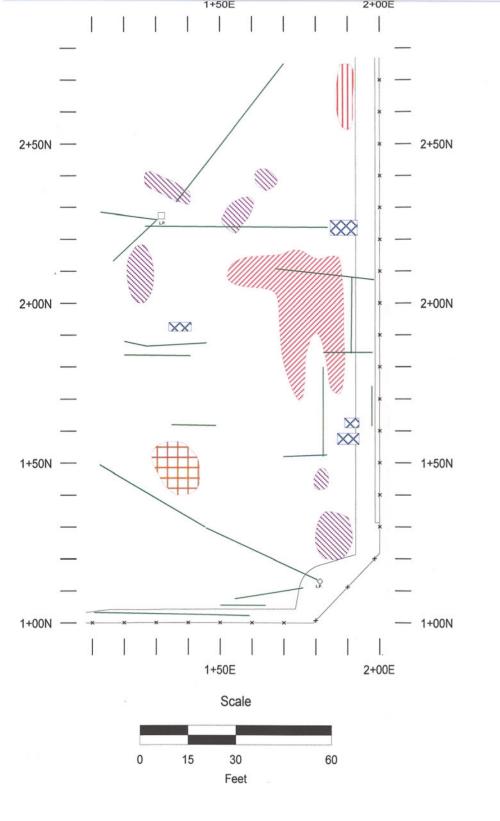


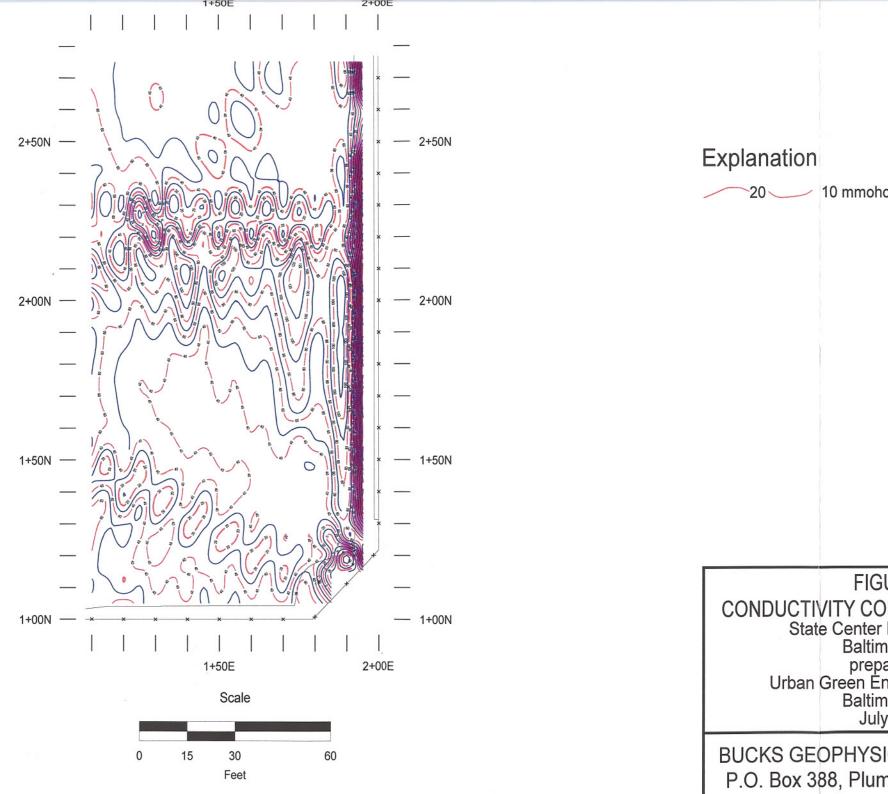






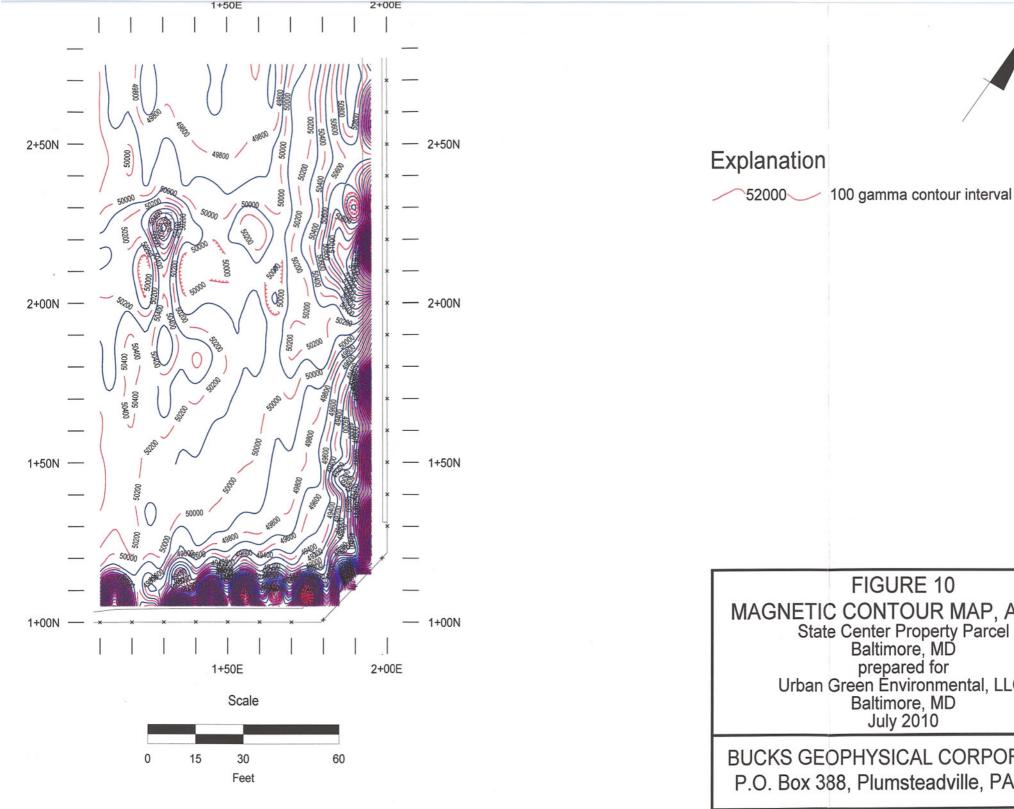
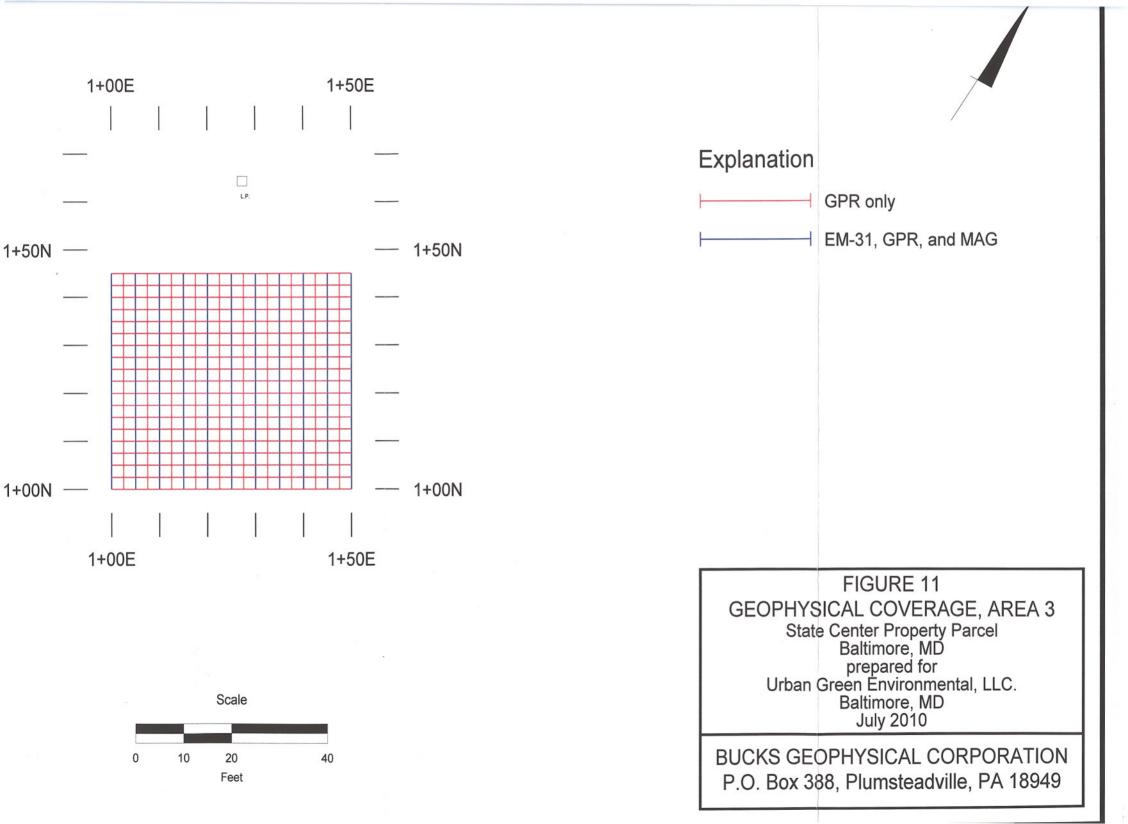
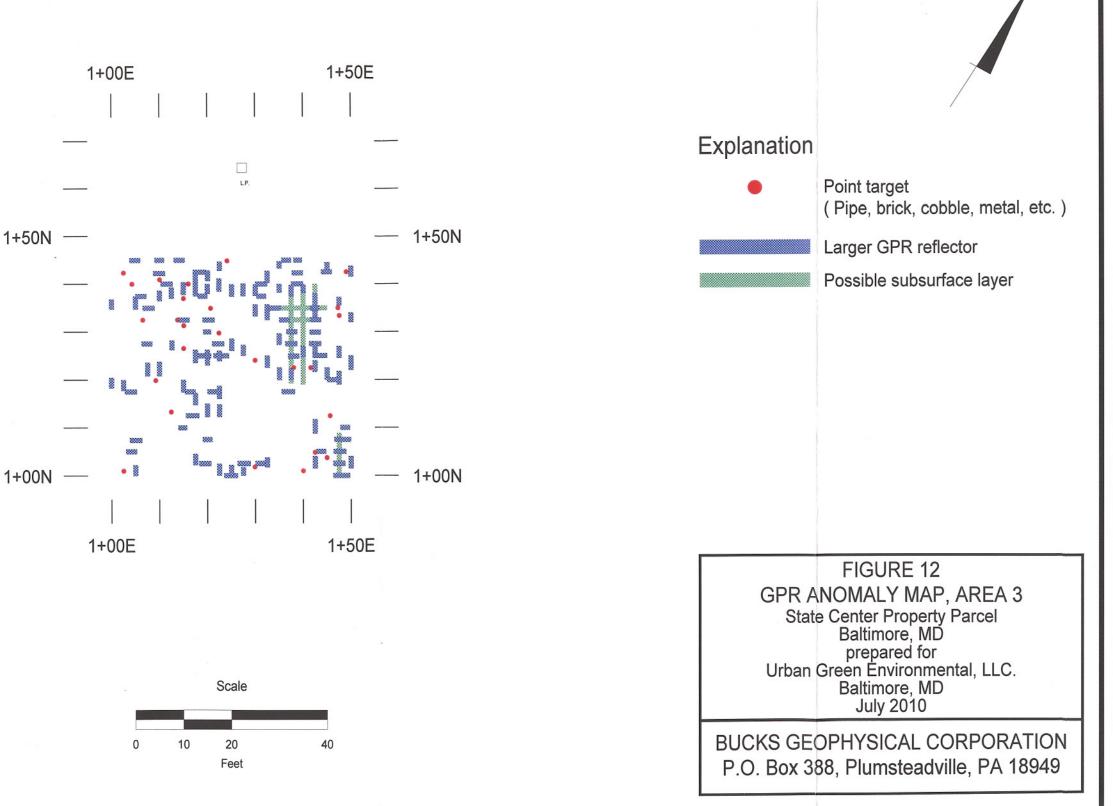
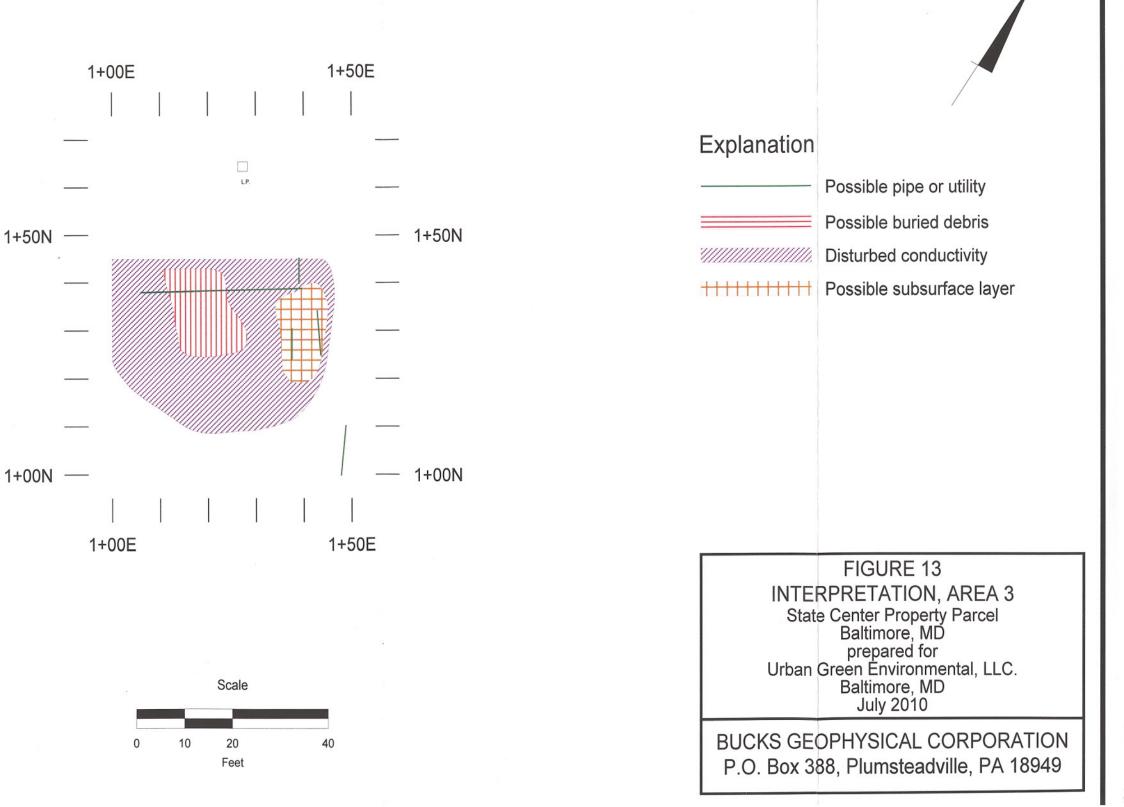
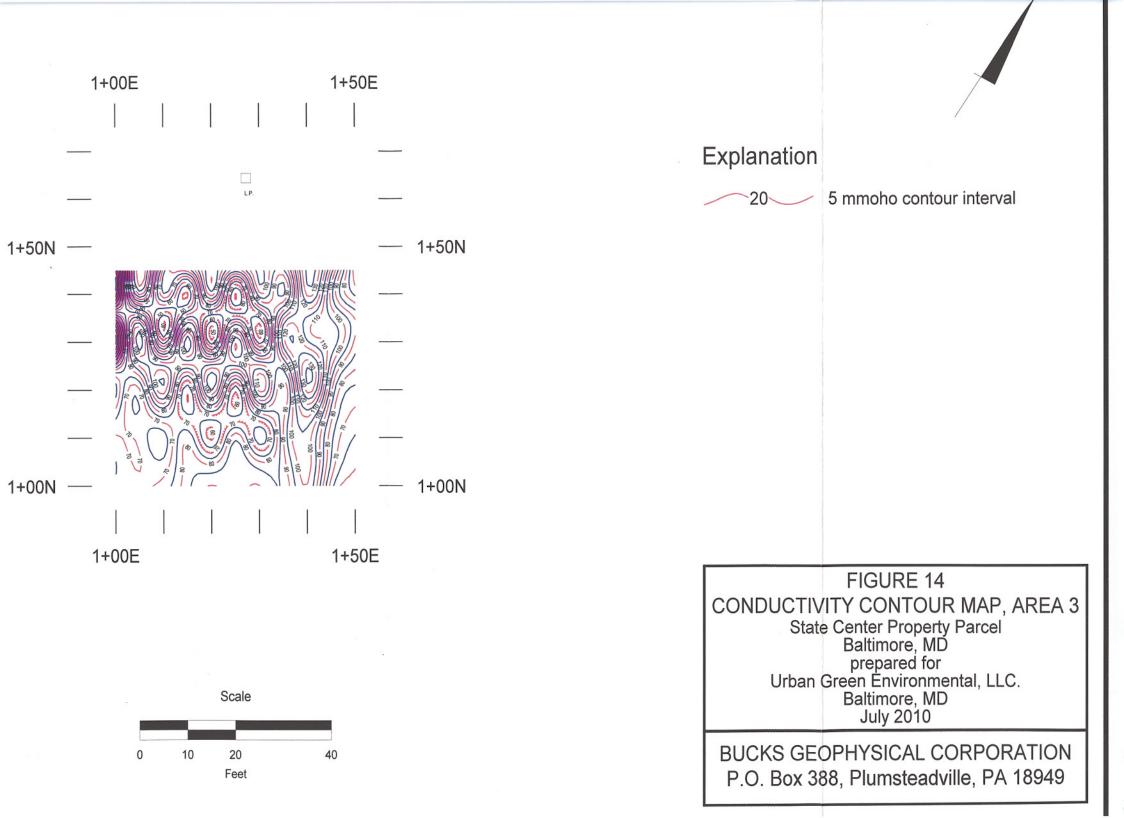


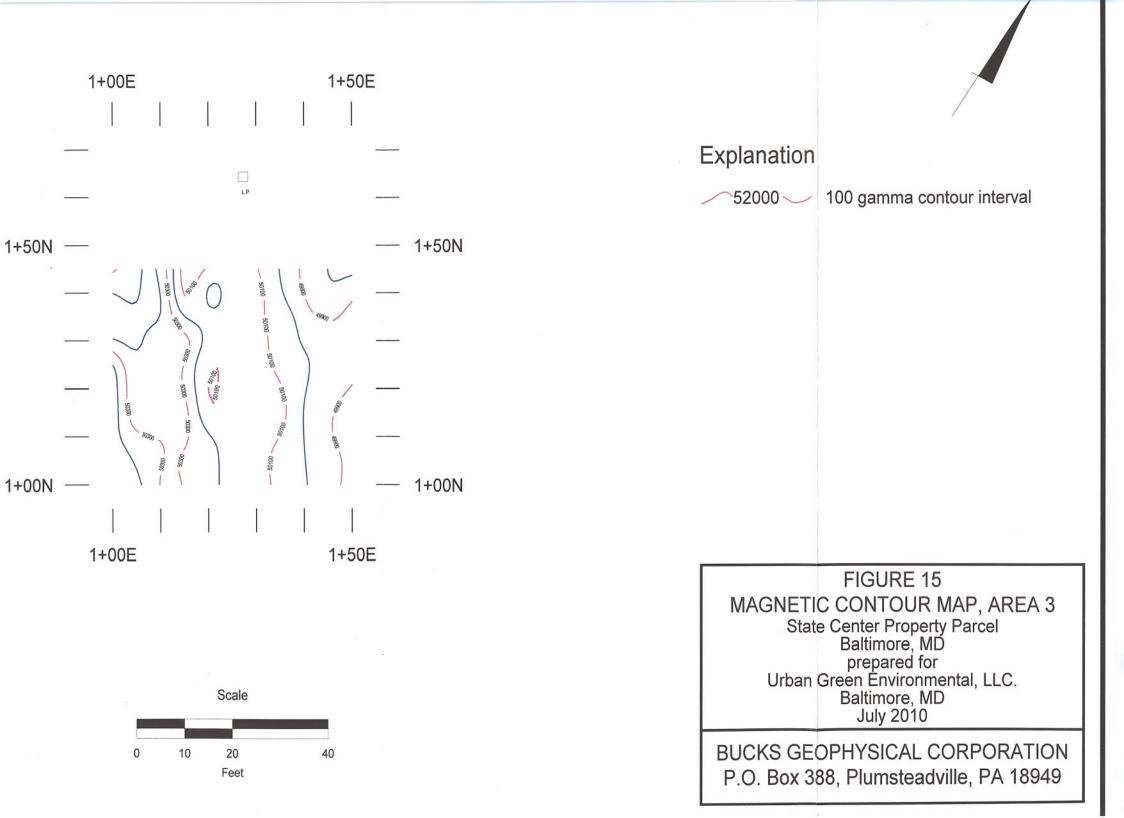


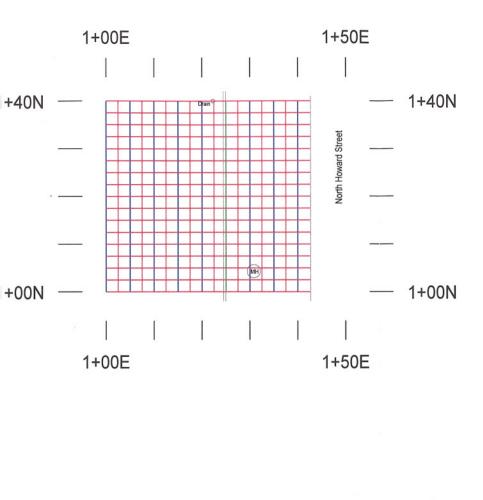


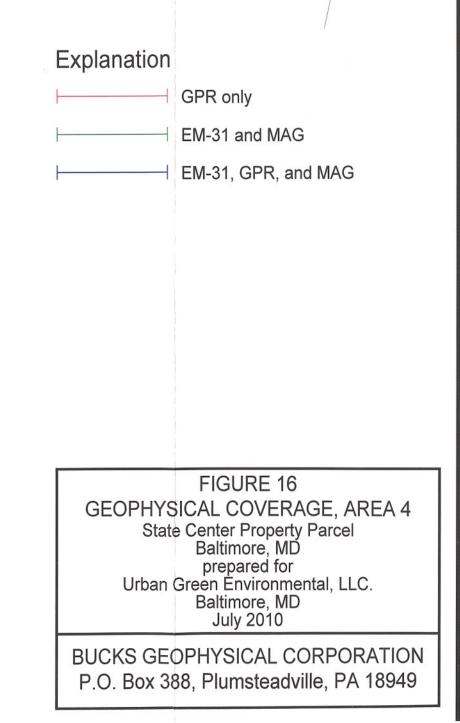
Explanation Possible pipe or utility Possible pipe or tank Anomalous area Magnetic high +++++++ Possible subsurface layer **FIGURE 8** INTERPRETATION, AREA 2 State Center Property Parcel Baltimore, MD Urban Green Environmental, LLC. Baltimore, MD July 2010 BUCKS GEOPHYSICAL CORPORATION P.O. Box 388, Plumsteadville, PA 18949

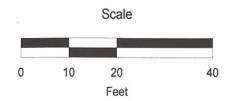
10 mmoho contour interval FIGURE 9 CONDUCTIVITY CONTOUR MAP, AREA 2 State Center Property Parcel Baltimore, MD Urban Green Environmental, LLC. Baltimore, MD July 2010 BUCKS GEOPHYSICAL CORPORATION P.O. Box 388, Plumsteadville, PA 18949

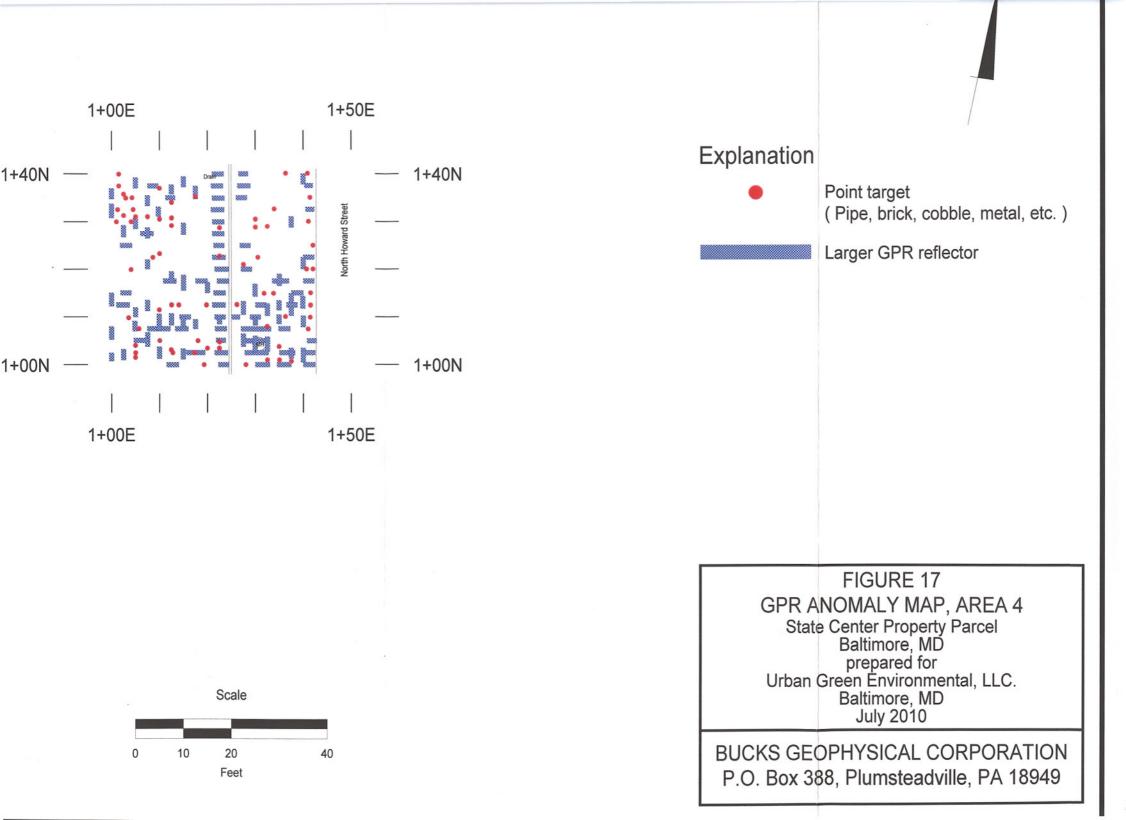






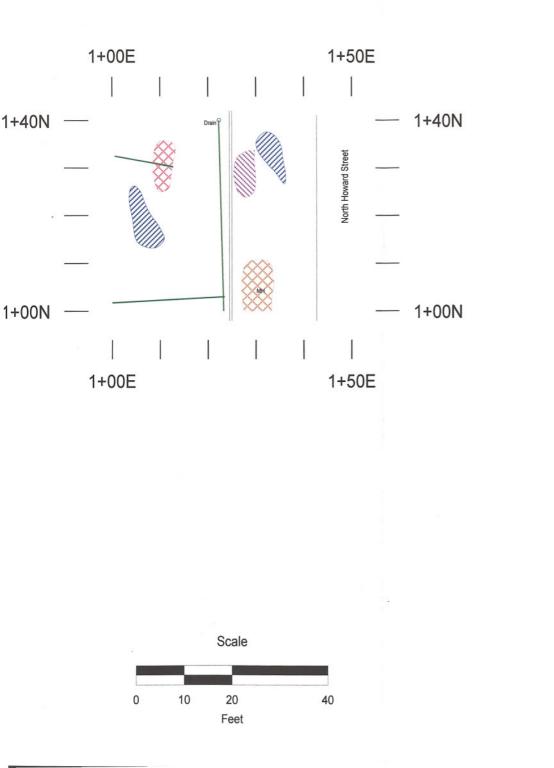

FIGURE 10 MAGNETIC CONTOUR MAP, AREA 2 State Center Property Parcel Baltimore, MD prepared for Urban Green Environmental, LLC. BUCKS GEOPHYSICAL CORPORATION P.O. Box 388, Plumsteadville, PA 18949

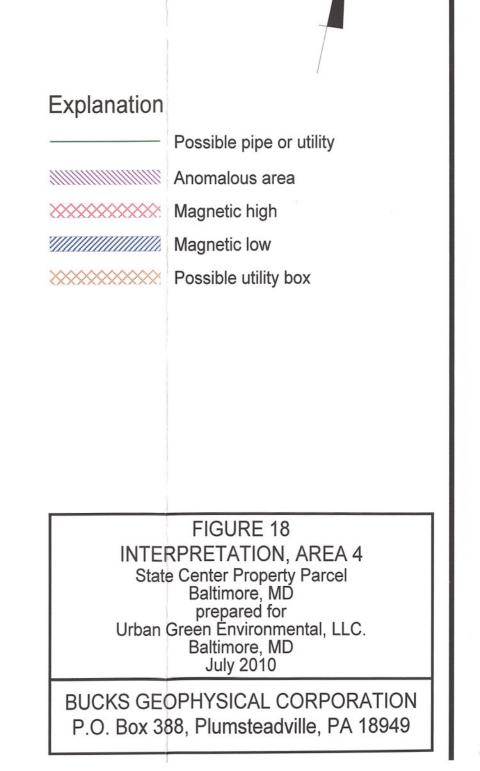


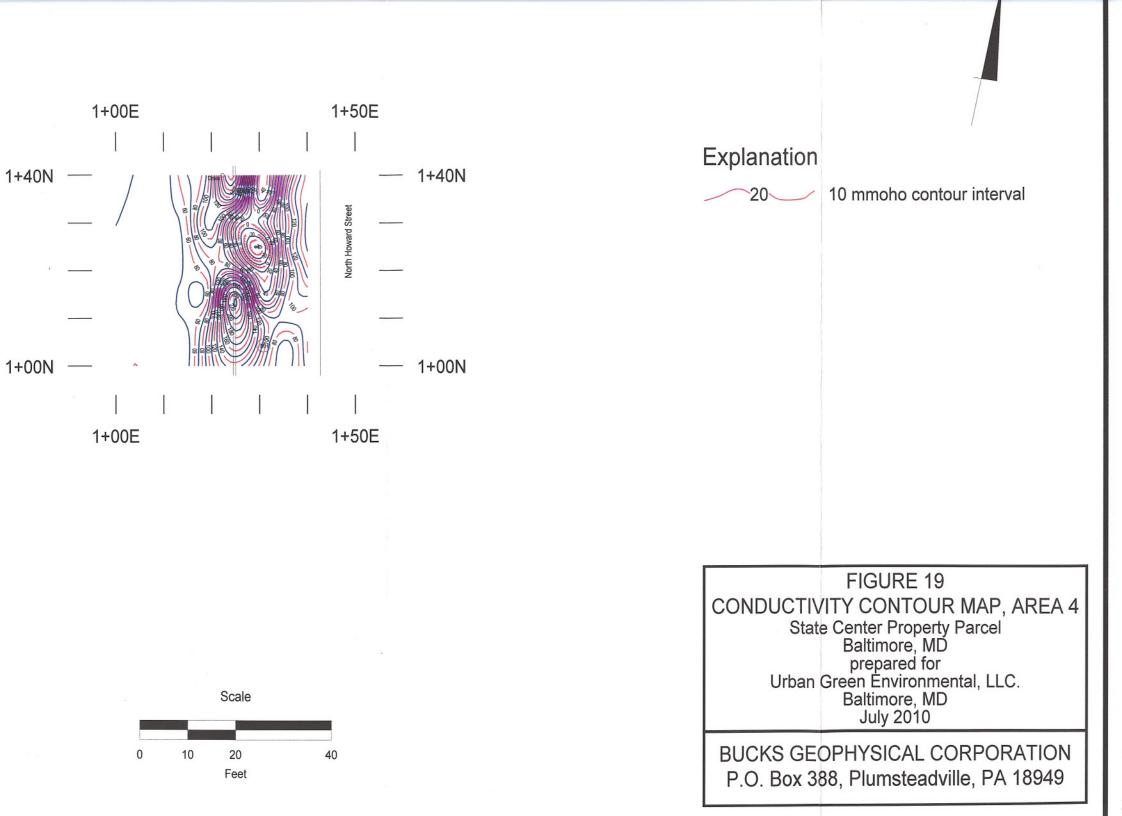


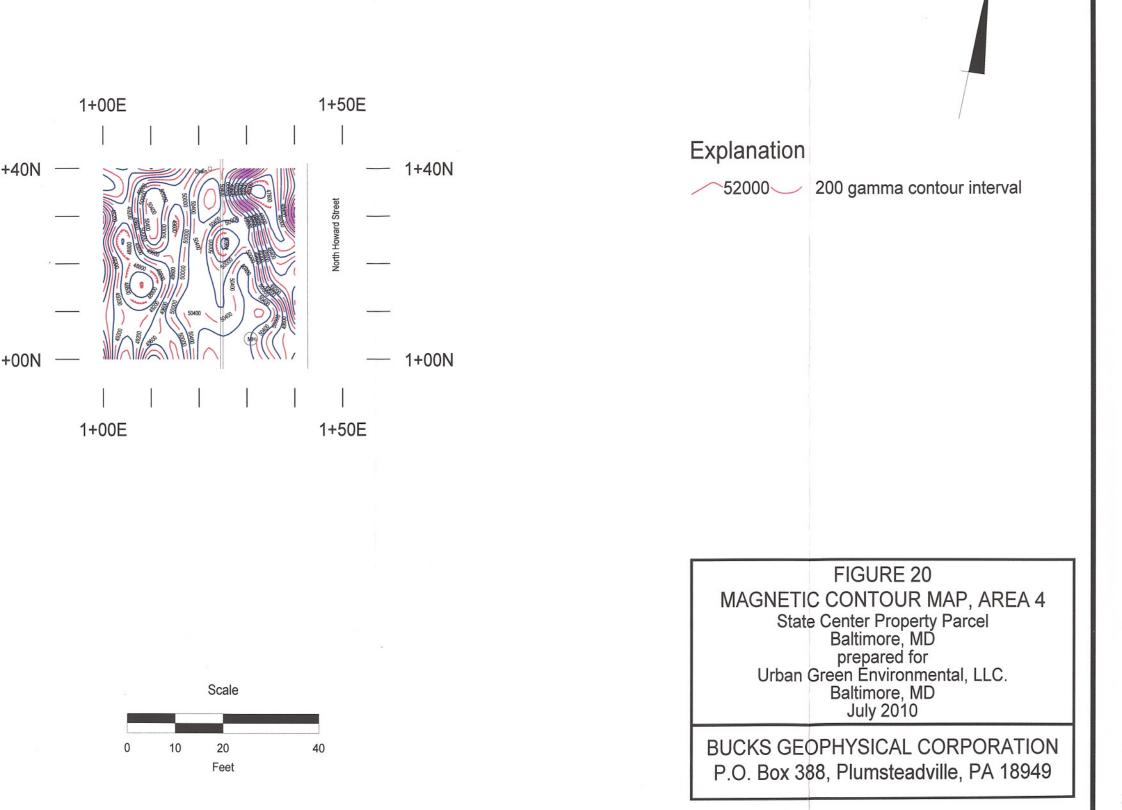












Í

ELECTROMAGNETICS (EM-31)

The EM-31 measures subsurface conductance using the principles of electromagnetic induction. The EM-31 is portable, rapid, and nondestructive. It has a fixed boom containing the transmitter and receiver coils so that handling and data gathering is easily achieved by one operator.

The EM-31 sends an alternating current into the transmitter coil. This alternating current generates an alternating primary magnetic field, which in turn induces a small alternating current in any conductive medium surrounding the transmitter coil. The alternating current in the conductive medium generates an alternating secondary magnetic field which is detected by the receiver coil. The EM-31 calculates the conductivity of the subsurface (mmhos/m) by comparing the primary field and the secondary field.

Factors which may increase subsurface conductivities include higher moisture content, greater amounts of finer materials, increased clay and/or silt content, soil contamination and/or ground water contamination. The presence of buried metal can also affect the conductivity data.

The detectability of metal objects (buried pipes, drums, etc.) can be enhanced by measuring the change in the magnitude of the primary field (inphase component) of the induced magnetic field. The change in magnitude is measured in parts per thousand (PPT). The primary field is affected mainly by metal.

Several factors can affect the effectiveness of the EM method including the proximity of cultural interferences (such as buildings, fences and reinforced concrete), the presence of highly conductive materials (such as clays and water), and the size, depth, and conductivity contrast of the target.

GROUND PENETRATING RADAR

Some of the uses of GPR include locating buried tanks and drums, delineating boundaries of landfills and trenches, and defining voids and geologic stratigraphy. Although other techniques can also provide this information, GPR is less affected by cultural interferences such as overhead power lines, buildings, and fences. GPR can also provide higher resolution of the target in many cases.

The antenna can either be moved manually by an operator or towed by a vehicle. Depths of exploration can vary widely, from just a few feet in water saturated clayey materials to hundreds of feet in glacial ice. A variety of antennas (ranging from 80 to 900 Mhz) can be used depending on subsurface conditions and the objective of the survey. Resolution of shallow objects requires higher frequencies, while lower frequencies work better for deeper investigations.

The profile recorder supplies the power and synchronizing signals to the antenna. The antenna outputs a pulse of electromagnetic energy to the ground. The energy pulse is reflected by geologic layers or objects under the surface back to the antenna. The antenna converts the pulse (nanoseconds in duration) to an analog signal (tens of milliseconds in duration) back to the radar unit. The signal is then processed and sent to a graphic recorder which creates a continuous profile of the subsurface reflectors.

Several factors can affect the effectiveness of the GPR method including reinforced concrete at the surface, the presence of highly conductive materials (such as clays and water), the size, depth, and physical property of the target and in stratigraphic investigations, the conductivity contrast between stratigraphic units. The presence of numerous buried objects may mask objects and/or stratigraphy below them.

MAGNETOMETER

A magnetometer is a rapid, effective and non-destructive instrument used to locate buried ferrous material (drums, pipes, mineral deposits, archaeological objects, etc.). The instrument is operated and carried by one person, and contains a digital memory for data storage.

The proton magnetometer utilizes the precession of spinning protons to measure the intensity of the earth's magnetic field. The protons act as small magnetic dipoles. A coil is charged with an electrical current which creates a magnetic field, which temporarily aligns the protons with respect to the coil. The current is then removed, and the protons spin in the direction of the earth's magnetic field. As the protons spin they generate a small electrical signal, which is measured and converted into a value of magnetic intensity (gammas) by the magnetometer. The intensity of the earth's magnetic field is affected by ferrous material.

Interpretation of magnetometer data includes recognizing and characterizing local changes in the intensity of the earth's magnetic field. Analysis usually involves contouring and profiling the data. The size, shape, and magnitude of an anomaly depends on the mass, orientation and depth of the buried target (drums, mineral deposits, etc.). Modeling of the data can provide a rough estimate of the mass and depth of the target, but is usually reserved for large-scale geological surveys.

Several factors can limit the effectiveness of the magnetometry method including the proximity of cultural interferences (such as buildings, fences, and reinforced concrete), and the size, depth and magnetic susceptibility of the target.

APPENDIX B

SOIL BORING LOGS

SOIL BOR							HOLE NUMBER		8-8	
1. COMPA	NY NAME				CONTRACT	FOR		51	D-0	SHEET SHEETS
UR 3. PROJEC	BAN GREEN ENV T	IRONMENTAL	GRE	EN SERVI	ICES INC.			Ι		1 of 1
Sta	te Center Parcel	G			0	ACTURED				
Do					GE	OPROBE 5				
	ND TYPES OF DR	ILLING AND SAMPLING EQUIPMENT			10. SURFA	CE ELEVA	TION AND CONDITIONS			
TYPE OF L	INER USED, IF AP						Asphalt Paved - Former Fil	ling Station,	, Southeast Co	orner
HD 11. DIREC	PE T READING PARA	METERS:			12. DATE	STARTED		13. DATE (COMPLETED	
	Cs (PID) BURDEN THICKNI					31/2010	WATER ENCOUNTERED	1/2010		
> 2	0				NA					
16. DEPTH NA	I DRILLED INTO F	OCK			17. DEPTH NA		R AND ELAPSED TIME ATFER DRILLIN	G COMPLET	ED	
	DEPTH OF HOLE feet below grade				19. OTHEI NA		EVEL MEASUREMENTS (SPECIFY)			
20. WELL	INSTALLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM			SAMPLE T					
NO 21. SAMP		NA D DESIGNATION FOR LAB ANALYSIS	SAMPLE INTERV	AL AND D	DESIGNATI	ON FOR FI	ELD SCREENING ANALYSIS			SCREENING ANALYSIS
SB-8 0-1	SVOCs, PPL Met	als								
SB-8 4-5 22. DISPO		PPL Metals, Pesticides, Herbicides, PCBs IF NOT A WELL, BACKFILLED WITH:				Every 21	feet for VOCs with a PID 23. GEOLOGIST			VOCs
OF HOLE		Soil Cuttings / Bentonite			DIRECT		K FORD	DEDTU	25001/501/	
USCS	DEPTH	DESCRIPTION OF MATERIALS			DIRECT F	READING d)	ANALYTICAL SAMPLE DESIGN.	DEPTH (FT)	RECOVERY (FT)	REMARKS
LOG (a)	(FT) (b)	(c)			VOC (ppm)	Depth (ft)	(e)	(f)	(g)	
	0-0.5	Asphalt, gravel and sand (subbase).			0.0	(15)	(~)		187	
		FILL, medium sand, some crushed brick							75%	No visual staining or chemical
	2.5-4.0	Medium to fine SAND, some gravel.			0.0				, 373	odor.
4.0-6.0 Medium to fine sandy SILT, some gravel.		0.0					No visual staining or chemical			
	6.0-8.0	Fine sand.			0.0				100%	odor.
	8.0-10.0	Medium to coarse sand, some gravel, reddish brow	'n.		0.0					
									100%	No visual staining or chemical
	10.0-14 <u>.0</u>	Gravel, some medium to coarse sand.			0.0					odor.
					0.0					
					0.0					No visual staining or chemical
	14.0-15.0	Silty clay.			0.0				100%	odor.
	15.0-16.0	Fine sand, reddish brown.								
	16.0-17 <u>.0</u>	Medium to coarse sand, some gravel.			0.0					
	17.0-18 <u>.0</u>	Fine sand, little silt.							100%	No visual staining or chemical odor.
		End boring at 18 feet below grade (refusal). No gro	oundwater observ	ved.						
DROIFOT										
PROJECT:		016-006-10			HOLE NO.			SE	3-8	

					HOLE NUMBER							
SOIL BOR 1. COMP/	ING LOG ANY NAME		2. DRILL SUE	BCONTRAC	TOR		S	B-9	SHEET SHEETS			
UF 3. PROJEC	RBAN GREEN EN'	VIRONMENTAL	GREEN SERV	ICES INC.					1 of 1			
Sta	ate Center Parce	l G										
Do	OF DRILLER on			GI	OPROBE 5							
	ND TYPES OF D X 4' MACROCOI	RILLING AND SAMPLING EQUIPMENT		10. SURF	ACE ELEVA	TION AND CONDITIONS						
TYPE OF L	INER USED, IF A					Asphalt Paved - Former Fill	ling Station	- Southeast C	orner			
11. DIREC	DPE T READING PAR	AMETERS:			STARTED			COMPLETED				
	OCs (PID) BURDEN THICKN	IESS			31/2010 H GROUNI	OWATER ENCOUNTERED	7/	31/2010				
> 2	20 1 DRILLED INTO	BOCK		N/		ER AND ELAPSED TIME ATFER DRILLIN		TED				
NA	λ			NA 19. OTHER WATER LEVEL MEASUREMENTS (SPECIFY)								
24	DEPTH OF HOL feet below grad	le (refusal)		N	4	LEVEL MEASUREMENTS (SPECIFY)						
NO)	IF SO COMPLETE CONSTRUCTION DIAGRAM			TYPE:							
21. SAMP	LE INTERVAL AN	D DESIGNATION FOR LAB ANALYSIS SAMPLE IN Selevated PID reading or staining is observed,	ITERVAL AND	DESIGNAT	ION FOR F	IELD SCREENING ANALYSIS			SCREENING ANALYSIS			
No sample collect on	samples planned - in elevated r/l) reading or staining is observed, lect one 4-oc. soil jar from the soil interval. Submit to lab as a hold DISPOSITION IF NOT A WELL, BACKFILLED WITH:			Every 2	feet for VOCs with a PID			VOCs				
22. DISPO OF HOLE	SITION	IF NOT A WELL, BACKFILLED WITH: Soil Cuttings / Bentonite				23. GEOLOGIST						
					READING	ANALYTICAL	DEPTH	RECOVERY				
USCS LOG	DEPTH (FT)	DESCRIPTION OF MATERIALS		VOC (d) Depth	SAMPLE DESIGN.	(FT)	(FT)	REMARKS			
(a)	(b)	(c)		(ppm)	(ft)	(e)	(f)	(g)				
	0-0.5	Asphalt, gravel and sand (subbase).		0.0					No visual staining or chemical			
	0.5-4.0	Medium to fine sandy silt, some gravel.		0.0				75%	odor.			
	4.0-5.0	Medium to coarse sand, some gravel.		0.0								
	5.0-10.0	Fine sand, some silt.						80%	No visual staining or chemical odor.			
				0.0					00011			
				0.0								
								100%	No visual staining or chemical			
	10.0-11 <u>.0</u>	Silty fine sand.		0.0				100,0	odor.			
	11.0-12.0	Silty clay.		0.0								
	12.0-16 <u>.0</u>	Silty fine sand.		0.0					No visual staining or chemical			
				0.0				100%	odor.			
	16.0-20 <u>.0</u>	Fine sand and gravel.		0.0					No visual staining or chemical			
				0.0				100%	odor.			
	20.0-23 <u>.0</u>	Fine sand, some gravel.		0.0								
				0.0				100%	No visual staining or chemical odor.			
	23.0-24.0	Fine sand, some silt.										
		End boring at 24 feet below grade (refusal). No groundwate	r observed.									
				-			-					
PROJECT:		016-006-10		HOLE NO	.:		S	B-9				

						HOLE NUMBER			-10A		
	NING LOG			RILL SUBC		FOR		30	104	SHEET SHEETS	
3. PROJEC			GRE	EEN SERVIC	LES INC.					1 of 1	
St 7. NAME	ate Center Parce OF DRILLER	21 G		8	B. MANU	ACTURER	'S DESIGNATION OF DRILL				
Do	on	RILLING AND SAMPLING EQUIPMENT		1	GE 10. SURF#	OPROBE 5	5410 TION AND CONDITIONS				
2" TYPE OF I	X 4' MACROCOL LINER USED, IF A	RE					Asphalt Paved -	Former Bak	e House		
11. DIREC	CT READING PAR	AMETERS:		1	12. DATE			COMPLETED			
14. OVER	DCs (PID) BURDEN THICKN	IESS		1	7/3 15. DEPTH	31/2010 I GROUNE	WATER ENCOUNTERED	7/3	31/2010		
> 16. DEPT	20 H DRILLED INTO	ROCK		1	NA 17. DEPTH		ER AND ELAPSED TIME ATFER DRILLIN	NG COMPLE	TED		
	L DEPTH OF HOL			1		R WATER L	EVEL MEASUREMENTS (SPECIFY)				
20. WELI		IF SO COMPLETE CONSTRUCTION DIAGRAM		S	NA SAMPLE T						
N(21. SAMF		NA ID DESIGNATION FOR LAB ANALYSIS	SAMPLE INTERV	AL AND D	ESIGNAT	ION FOR F	IELD SCREENING ANALYSIS			SCREENING ANALYSIS	
SB-10 0-1	1 SVOCs, PPL M	etals					feet for VOCs with a PID			VOCs	
22. DISPC	5 VOCs, SVOC					EVCIY 21	23. GEOLOGIST			1003	
OF HOLE	DEPTH	Soil Cuttings / Bentonite DESCRIPTION OF MATERIALS			DIRECT F		ANALYTICAL SAMPLE DESIGN.	DEPTH (FT)	RECOVERY (FT)	REMARKS	
LOG (a)	(FT) (b)	(c)		-	VOC (ppm)	Depth (ft)	(e)	(F1) (f)	(F1) (g)	REIVIARIAS	
<u>, , , , , , , , , , , , , , , , , , , </u>	0-2.5	Asphalt, gravel and sand (subbase).			0.0	X-7			107		
	2.5-10.0	FILL; sandy silt, some gravel.			0.0				75%	No visual staining or chemical odor.	
					0.0						
					0.0				75%	No visual staining or chemical odor.	
					0.0						
	10.0-16 <mark>.0</mark>	Fine sand.			0.0				75%	No visual staining or chemical odor.	
					0.0					No visual staining or chemical	
					0.0				80%	odor.	
		End boring at 16 feet below grade. No groundwate	er observed.								
	·										
DDO IS OF					015.55						
PROJECT:		016-006-10		F	HOLE NO.	:		SB-	10A		

	HOLE NUMBER											
	ING LOG			2. DRILL SUE	CONTRAC	TOR	l	SB	-11A	SHEET SHEETS		
UR	RBAN GREEN EN	VIRONMENTAL		GREEN SERV						1 of 1		
. PROJEC												
	ate Center Parce	el G			8. MANU	FACTURER	'S DESIGNATION OF DRILL					
Do	n				GEOPROBE 5410							
	ND TYPES OF D X 4' MACROCO	RILLING AND SAMPLING EQUIPMENT			10. SURF#	ACE ELEVA	TION AND CONDITIONS					
	INER USED, IF A						Asphalt Paved -	Former Bal	ke House			
HD	OPE											
	T READING PAR	AMETERS:			12. DATE				COMPLETED			
14. OVERI	Cs (PID) BURDEN THICKN	NESS				31/2010 I GROUNE	WATER ENCOUNTERED	//	31/2010			
> 2	20				NA	λ						
16. DEPTH NA	H DRILLED INTO	ROCK			17. DEPTH NA		ER AND ELAPSED TIME ATFER DRILLI	NG COMPLI	ETED			
8. TOTAL	DEPTH OF HOL	LE					EVEL MEASUREMENTS (SPECIFY)					
	feet below grad				NA					1		
20. WELL NC	INSTALLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM			SAMPLE T	YPE:						
		ND DESIGNATION FOR LAB ANALYSIS	SAMPLE IN	TERVAL AND	DESIGNAT	ION FOR F	IELD SCREENING ANALYSIS			SCREENING ANALYSIS		
No sampl	es planned - if	elevated PID reading or staining is observed,										
		from the soil interval. Submit to lab as a hold IF NOT A WELL, BACKFILLED WITH:				Every 2	feet for VOCs with a PID			VOCs		
2. DISPO F HOLE	SHIUN	IF NOT A WELL, BACKFILLED WITH: Soil Cuttings / Bentonite					23. GEOLOGIST					
						READING	ANALYTICAL	DEPTH	RECOVERY			
	DEPTH	DESCRIPTION OF MATERIALS			(0		SAMPLE DESIGN.	(FT)	(FT)	REMARKS		
LOG (a)	(FT) (b)	(c)			VOC (ppm)	Depth (ft)	(e)	(f)	(g)			
	0-2.5	Asphalt, gravel and sand (subbase).			0.0	1.1	1-1	1.1	10/			
		- Server and Sand (Subbase).			0.0					No visual staining or chemical		
	2.5-10.0	FILL; sandy silt, some gravel.			0.0				50%	odor.		
	2.5 10.0				0.0							
					0.0							
					0.0					No visual staining or chemical		
		-			0.0				100%	odor.		
		-			0.0							
		-			0.0					No. Journal advantations on advanced and		
									90%	No visual staining or chemical odor.		
	10.0-16 <u>.0</u>	Fine sand.			0.0					00077		
		-			0.0					No. Journal and a large stand and a second		
		-							90%	No visual staining or chemical odor.		
		4			0.0							
		End boring at 16 feet below grade. No groundw	ater abserver	1				+				
	·		alli observed	•								
		-										
		4										
								+				
		4										
		1										
		1										
								1				
		1										
]										
		4										
		4										
		4										
		4										
					-							
PROJECT:					HOLE NO.							

SOIL BORING LOG		HOLE NUMBER							
1. COMPA	ING LOG ANY NAME		2. DRILL SUE		TOR		SE	6-12	SHEET SHEETS
UF 3. PROJEC	RBAN GREEN EN	VIRONMENTAL	GREEN SERV	/ICES INC.					1 of 1
Sta	ate Center Parce	el G							
Do	n			GI	OPROBE 5				
	AND TYPES OF D X 4' MACROCO	RILLING AND SAMPLING EQUIPMENT RE		10. SURF	ACE ELEVA	TION AND CONDITIONS			
TYPE OF L	INER USED, IF A					Asphalt Paved - General Site Cl	haracteriza	tion - Northea	st Corner
11. DIREC	ope T reading par	AMETERS:			STARTED			COMPLETED	
	DCs (PID) BURDEN THICKN	IESS			31/2010 H GROUNE	DWATER ENCOUNTERED	7/3	31/2010	
> 2	20 H DRILLED INTO	RUCK		N/		ER AND ELAPSED TIME ATFER DRILLIN		TED	
NA	A			N/	4				
20	L DEPTH OF HOL feet below grad			N/	4	LEVEL MEASUREMENTS (SPECIFY)			
NC	. INSTALLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM		SAMPLE	TYPE:				
21. SAMP	LE INTERVAL AN	ID DESIGNATION FOR LAB ANALYSIS SAMPLE II elevated PID reading or staining is observed,	NTERVAL AND	DESIGNAT	ION FOR F	IELD SCREENING ANALYSIS			SCREENING ANALYSIS
No sampl collect or	les planned - if e ne 4-oz. soil jar f	rom the soil interval. Submit to lab as a hold IF NOT A WELL, BACKFILLED WITH:			Every 2	feet for VOCs with a PID			VOCs
22. DISPO OF HOLE	SITION	IF NOT A WELL, BACKFILLED WITH: Soil Cuttings / Bentonite				23. GEOLOGIST			
					READING	ANALYTICAL	DEPTH	RECOVERY	
	DEPTH (FT)	DESCRIPTION OF MATERIALS		VOC	d) Depth	SAMPLE DESIGN.	(FT)	(FT)	REMARKS
(a)	(b)	(c)		(ppm)	(ft)	(e)	(f)	(g)	
	0-0.5	Asphalt, gravel and sand (subbase).		0.0					No visual staining or chomical
	0.5-5.0	FILL, sandy silt, some gravel.		0.0				50%	No visual staining or chemical odor.
				0.0					
5.0-15.0 Clayey sand and silt, little gravel.						75%	No visual staining or chemical odor.		
				0.0					0001.
				0.0					
								100%	No visual staining or chemical
				0.0				100%	odor.
				0.0					
				0.0					No visual staining or chemical
				0.0				90%	odor.
	15.0-17.0	Medium to fine sandy silt.							
	17.0-20.0	Fine to medium sand.		0.0					No visual staining or chemical
	17.0-20.0	rine to medium sand.		0.0				100%	odor.
		End boring at 20 feet below grade. No groundwater observe	d.						
		1							
				ļ					
ĺ									
ĺ					<u> </u>				
ĺ									
ĺ									
PROJECT:	ROJECT: HOL 016-006-10		HOLE NO	.:		SB	-12		

APPENDIX C LABORATORY ANALYTICAL REPORT

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Date Sampled:	07/31/10 8:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

10080203

SDG Number:

Project:	State Center - Parcel G
Site Location:	Baltimore City
Project Number:	016-006-10

Field Sample ID: SB-8 0-1		Mat	rix: Soil		La	ab ID: 10080	203-01
	Result	Unit	LLQ	Method	Prepared	Analyzed	lnit.
Percent Solids							
Percent Solids	90	%		SM2540G	08/03/10	08/03/10 15:38	LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Acenaphthylene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Anthracene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Benzo[a]anthracene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Benzo[a]pyrene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Benzo[b]fluoranthene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Benzo[g,h,i]perylene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Benzo[k]fluoranthene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Chrysene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Dibenz[a,h]anthracene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Fluoranthene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Fluorene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Indeno[1,2,3-cd]pyrene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
2-Methylnaphthalene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Naphthalene`	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Phenanthrene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Pyrene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:13	CBS
Target Compound List - SEMIVOLATILES							
Phenol	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Bis (2-chloroethyl) ether	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
2-Chlorophenol	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
2-Methylphenol	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Bis (2-chloroisopropyl) ether	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Acetophenone	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
4-Methylphenol	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
N-Nitroso-di-n-propylamine	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Hexachloroethane	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Nitrobenzene	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Isophorone	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
2-Nitrophenol	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
2,4-Dimethylphenol	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Bis (2-chloroethoxy) methane	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
2,4-Dichlorophenol	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
4-Chloroaniline	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Hexachlorobutadiene`	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Caprolactam	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
4-Chloro-3-methylphenol	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS

Page 1 of 16

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Date Sampled:	07/31/10 8:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

10080203

SDG Number:

Project:	State Center - Parcel G
Site Location:	Baltimore City
Project Number:	016-006-10

Field Sample ID:	SB-8 0-1		Ma	trix: Soil		La	ab ID: 100802	203-0 ⁻
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Farget Compound Lis	t - SEMIVOLATILES							
Hexachlorocycloper	Itadiene	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
2,4,6-Trichlorophene	ol	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
2,4,5-Trichlorophene	ol	ND	ug/kg	250	EPA 8270C	08/09/10	08/10/10 12:13	CBS
1,1-Biphenyl		ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
2-Chloronaphthalen	е	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
2-Nitroaniline		ND	ug/kg	250	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Dimethyl phthalate		ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
2,6-Dinitrotoluene		ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
3-Nitroaniline		ND	ug/kg	250	EPA 8270C	08/09/10	08/10/10 12:13	CBS
2,4-Dinitrophenol		ND	ug/kg	250	EPA 8270C	08/09/10	08/10/10 12:13	CBS
4-Nitrophenol		ND	ug/kg	250	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Dibenzofuran		ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
2,4-Dinitrotoluene		ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Diethyl phthalate		ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
4-Chlorophenyl pher	nyl ether	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
4-Nitroaniline		ND	ug/kg	250	EPA 8270C	08/09/10	08/10/10 12:13	CBS
4,6-Dinitro-2-methyl	phenol	ND	ug/kg	230	EPA 8270C	08/09/10	08/10/10 12:13	CBS
N-Nitrosodiphenylar	nine	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
4-Bromophenyl pher	nyl ether	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Hexachlorobenzene		ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Atrazine		ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Pentachlorophenol		ND	ug/kg	250	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Carbazole		ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Di-n-butyl phthalate		ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Butyl benzyl phthala	te	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
3,3-Dichlorobenzidir	ne	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Bis (2-ethylhexyl) ph	ithalate	ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
Di-n-octyl phthalate		ND	ug/kg	100	EPA 8270C	08/09/10	08/10/10 12:13	CBS
otal Metals								
Antimony		ND	mg/kg	2.1	EPA 6020A	08/04/10	08/04/10 13:40	MEL
Arsenic		0.89	mg/kg	0.42	EPA 6020A	08/04/10	08/04/10 13:40	MEL
Beryllium		ND	mg/kg	2.1	EPA 6020A	08/04/10	08/04/10 13:40	
Cadmium		ND	mg/kg	2.1	EPA 6020A	08/04/10	08/04/10 13:40	
Chromium		16	mg/kg	2.1	EPA 6020A	08/04/10	08/04/10 13:40	
Copper		5.5	mg/kg	2.1	EPA 6020A	08/04/10	08/04/10 13:40	MEL
Lead		7.3	mg/kg	2.1	EPA 6020A	08/04/10	08/04/10 13:40	MEL
Mercury		0.12	mg/kg	0.085	EPA 6020A	08/04/10	08/04/10 13:40	MEL
Nickel		2.2	mg/kg	2.1	EPA 6020A	08/04/10	08/04/10 13:40	MEL
Selenium		ND	mg/kg	2.1	EPA 6020A	08/04/10	08/04/10 13:40	

Page 2 of 16

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211
 Date Sampled:
 07/31/10 8:30

 Date Received:
 08/02/10 11:50

 Date Issued:
 08/12/10

Project: Site Location: Project Number:	State Center - F Baltimore City 016-006-10	Parcel G				SDG Number	: 1008020	03			
Field Sample ID: S	B-8 0-1		Mat	rix: Soil		La	Lab ID: 100802				
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.			
Total Metals											
Silver		ND	mg/kg	2.1	EPA 6020A	08/04/10	08/04/10 13:40	MEL			
Thallium		ND	mg/kg	1.7	EPA 6020A	08/04/10	08/04/10 13:40	MEL			
Zinc		32	mg/kg	2.1	EPA 6020A	08/04/10	08/04/10 13:40	MEL			

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Matt Ubher

QC Chemist

Page 3 of 16

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Aroclor 1232

Aroclor 1242

Aroclor 1248

Date Sampled:	07/31/10 8:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

Project: Site Location: Project Number:	State Center - F Baltimore City 016-006-10	Parcel G				SDG Number	: 1008020)3
Field Sample ID: SI	B-8 4-5		Matr	ix: Soil	l	La	b ID: 100802	203-02
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Chlorinated Herbicides								
Dicamba		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:33	AC
MCPP		ND	ug/kg	2200	EPA 8151A	08/09/10	08/11/10 12:33	AC
MCPA		ND	ug/kg	2200	EPA 8151A	08/09/10	08/11/10 12:33	AC
Dichloroprop		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:33	AC
2,4-D		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:33	AC
2,4,5-TP (Silvex)		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:33	AC
2,4,5-T		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:33	AC
Dinoseb		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:33	AC
2,4-DB		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:33	AC
Organochlorine Pesticides								
Aldrin		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
a-BHC		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
b-BHC		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
g-BHC (Lindane)		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
d-BHC		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
a-Chlordane		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
g-Chlordane		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
4,4-DDD		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
4,4-DDE		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
4,4-DDT		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
Dieldrin		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
Endosulfan I		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
Endosulfan II		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
Endosulfan Sulfate		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
Endrin		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
Endrin Aldehyde		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
Endrin Ketone		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
Heptachlor		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
Heptachlor Epoxide		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
Methoxychlor		ND	ug/kg	10	EPA 8081A	08/04/10	08/09/10 14:32	AC
Toxaphene		ND	ug/kg	100	EPA 8081A	08/04/10	08/09/10 14:32	AC
Percent Solids								
Percent Solids		95	%		SM2540G	08/03/10	08/03/10 15:38	LMJ
Polychlorinated Biphenyls								
Aroclor 1016		ND	mg/kg	0.05	EPA 8082	08/05/10	08/09/10 11:55	AC
Aroclor 1221		ND	mg/kg	0.05	EPA 8082	08/05/10	08/09/10 11:55	AC
1 1000			4	0.05		00/05/10		

Page 4 of 16

0.05

0.05

0.05

EPA 8082

EPA 8082

EPA 8082

08/05/10

08/05/10

08/05/10

08/09/10 11:55 AC

08/09/10 11:55 AC

08/09/10 11:55 AC

mg/kg

mg/kg

mg/kg

ND

ND

ND

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Date Sampled:	07/31/10 8:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

10080203

SDG Number:

Project:	State Center - Parcel G
Site Location:	Baltimore City
Project Number:	016-006-10

Field Sample ID: SB-8 4-5	Matrix: Soil				La	b ID: 1008	0203-02
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Polychlorinated Biphenyls							
Aroclor 1254	ND	mg/kg	0.05	EPA 8082	08/05/10	08/09/10 11:5	5 AC
Aroclor 1260	ND	mg/kg	0.05	EPA 8082	08/05/10	08/09/10 11:5	5 AC
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Acenaphthylene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Anthracene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Benzo[a]anthracene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Benzo[a]pyrene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Benzo[b]fluoranthene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Benzo[g,h,i]perylene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Benzo[k]fluoranthene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Chrysene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Dibenz[a,h]anthracene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Fluoranthene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	
Fluorene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Indeno[1,2,3-cd]pyrene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
2-Methylnaphthalene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Naphthalene`	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Phenanthrene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Pyrene	ND	ug/kg	5	EPA 8270C	08/09/10	08/10/10 10:5	2 CBS
Target Compound List - SEMIVOLATILES							
Phenol	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	3 CBS
Bis (2-chloroethyl) ether	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	3 CBS
2-Chlorophenol	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	3 CBS
2-Methylphenol	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	3 CBS
Bis (2-chloroisopropyl) ether	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	3 CBS
Acetophenone	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	
4-Methylphenol	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	3 CBS
N-Nitroso-di-n-propylamine	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	
Hexachloroethane	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	
Nitrobenzene	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	
Isophorone	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	
2-Nitrophenol	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	
2,4-Dimethylphenol	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	
Bis (2-chloroethoxy) methane	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	
2,4-Dichlorophenol	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	
4-Chloroaniline	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	
Hexachlorobutadiene`	ND	ug/kg ug/kg	95 95	EPA 8270C	08/09/10	08/10/10 12:5	
Caprolactam	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:5	

Page 5 of 16

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Date Sampled:	07/31/10 8:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

10080203

SDG Number:

Project:	State Center - Parcel G
Site Location:	Baltimore City
Project Number:	016-006-10

Field Sample ID:	SB-8 4-5	Matrix: Soil				La	ab ID: 100802	203-02
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound List	- SEMIVOLATILES							
4-Chloro-3-methylphe	enol	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
Hexachlorocyclopenta	adiene	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
2,4,6-Trichlorophenol		ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
2,4,5-Trichlorophenol		ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 12:53	CBS
1,1-Biphenyl		ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
2-Chloronaphthalene		ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
2-Nitroaniline		ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 12:53	CBS
Dimethyl phthalate		ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
2,6-Dinitrotoluene		ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
3-Nitroaniline		ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 12:53	CBS
2,4-Dinitrophenol		ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 12:53	CBS
4-Nitrophenol		ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 12:53	CBS
Dibenzofuran		ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
2,4-Dinitrotoluene		ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
Diethyl phthalate		ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
4-Chlorophenyl pheny	/l ether	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
4-Nitroaniline		ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 12:53	CBS
4,6-Dinitro-2-methylpl	henol	ND	ug/kg	220	EPA 8270C	08/09/10	08/10/10 12:53	CBS
N-Nitrosodiphenylami	ine	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
4-Bromophenyl pheny	/l ether	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
Hexachlorobenzene		ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
Atrazine		ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
Pentachlorophenol		ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 12:53	CBS
Carbazole		ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
Di-n-butyl phthalate		ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
Butyl benzyl phthalate	9	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
3,3-Dichlorobenzidine	9	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
Bis (2-ethylhexyl) pht	halate	ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
Di-n-octyl phthalate		ND	ug/kg	95	EPA 8270C	08/09/10	08/10/10 12:53	CBS
Target Compound List	- VOLATILES							
Dichlorodifluorometha		ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Chloromethane		ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Vinyl chloride		ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Bromomethane		ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Chloroethane		ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Trichlorofluoromethar	ne	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,1-Dichloroethene		ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,1,2-Trichlorotrifluoro	pethane	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Acetone		ND	ug/kg	56	EPA 8260B	08/03/10	08/03/10 14:50	JKL

Page 6 of 16

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Date Sampled:	07/31/10 8:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

10080203

SDG Number:

Project:	State Center - Parcel G
Site Location:	Baltimore City
Project Number:	016-006-10

Field Sample ID: SB-8 4-5		Mat	Lab ID: 10080203-02				
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Farget Compound List - VOLATILES							
Carbon disulfide	ND	ug/kg	11	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Methyl acetate	ND	ug/kg	28	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Methylene chloride	ND	ug/kg	28	EPA 8260B	08/03/10	08/03/10 14:50	JKL
trans-1,2-Dichloroethene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,1-Dichloroethane	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
cis-1,2-Dichloroethene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
2-Butanone (MEK)	ND	ug/kg	56	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Chloroform	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,1,1-Trichloroethane	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Cyclohexane	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Carbon tetrachloride	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Benzene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,2-Dichloroethane	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Trichloroethene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Methylcyclohexane	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,2-Dichloropropane	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Bromodichloromethane	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
cis-1,3-Dichloropropene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	11	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Toluene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
trans-1,3-Dichloropropene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,1,2-Trichloroethane	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Tetrachloroethene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
2-Hexanone (MBK)	ND	ug/kg	11	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Dibromochloromethane	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,2-Dibromoethane	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Chlorobenzene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Ethylbenzene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
m&p-Xylene	ND	ug/kg	11	EPA 8260B	08/03/10	08/03/10 14:50	JKL
o-Xylene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Styrene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Bromoform	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
lsopropylbenzene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,1,2,2-Tetrachloroethane	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,3-Dichlorobenzene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,4-Dichlorobenzene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,2-Dichlorobenzene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,2-Dibromo-3-chloropropane	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
1,2,4-Trichlorobenzene	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL

Page 7 of 16

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Date Sampled:	07/31/10 8:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

Project: Site Location: Project Number	State Cente Baltimore C : 016-006-10					SDG Number	: 1008020)3
Field Sample ID:	SB-8 4-5		Mat	rix: Soil		La	b ID: 100802	203-02
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound List -	VOLATILES							
Ethyl t-butyl ether (ETE	BE)	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
tert-Butanol (TBA)		ND	ug/kg	28	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Diisopropyl ether (DIPE	Ξ)	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
tert-Amyl methyl ether	(TAME)	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
tert-Amyl alcohol (TAA)	ND	ug/kg	28	EPA 8260B	08/03/10	08/03/10 14:50	JKL
tert-Amyl ethyl ether (T	AEE)	ND	ug/kg	6	EPA 8260B	08/03/10	08/03/10 14:50	JKL
Total Metals								
Antimony		ND	mg/kg	2.6	EPA 6020A	08/04/10	08/04/10 13:46	MEL
Arsenic		1.2	mg/kg	0.51	EPA 6020A	08/04/10	08/04/10 13:46	MEL
Beryllium		ND	mg/kg	2.6	EPA 6020A	08/04/10	08/04/10 13:46	MEL
Cadmium		ND	mg/kg	2.6	EPA 6020A	08/04/10	08/04/10 13:46	MEL
Chromium		14	mg/kg	2.6	EPA 6020A	08/04/10	08/04/10 13:46	MEL
Copper		2.7	mg/kg	2.6	EPA 6020A	08/04/10	08/04/10 13:46	MEL
Lead		ND	mg/kg	2.6	EPA 6020A	08/04/10	08/04/10 13:46	MEL
Mercury		ND	mg/kg	0.1	EPA 6020A	08/04/10	08/04/10 13:46	MEL
Nickel		ND	mg/kg	2.6	EPA 6020A	08/04/10	08/04/10 13:46	MEL
Selenium ND		ND	mg/kg	2.6	EPA 6020A	08/04/10	08/04/10 13:46	MEL
Silver ND		ND	mg/kg	2.6	EPA 6020A	08/04/10	08/04/10 13:46	MEL
Thallium ND		ND	mg/kg	2.1	EPA 6020A	08/04/10	08/04/10 13:46	MEL
Zinc 5.7		5.7	mg/kg	2.6	EPA 6020A	08/04/10	08/04/10 13:46	MEL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Matt Obher

QC Chemist

Approved by:

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Date Sampled:	07/31/10 12:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

10080203

SDG Number:

Project:	State Center - Parcel G
Site Location:	Baltimore City
Project Number:	016-006-10

Field Sample ID:	SB-10A 0-1		Matrix: Soil			Lab ID: 10080203-0			203-08
		Result	Unit	LLQ	Method	Prepared	Analyzo	əd	Init.
Percent Solids									
Percent Solids		95	%		SM2540G	08/03/10	08/03/10	15:38	LMJ
Polycyclic Aromatic Hyd	rocarbons (SIM)								
Acenaphthene		ND	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Acenaphthylene		8	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Anthracene		8	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Benzo[a]anthracene		37	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Benzo[a]pyrene		56	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Benzo[b]fluoranthene		99	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Benzo[g,h,i]perylene		30	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Benzo[k]fluoranthene		42	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Chrysene		52	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Dibenz[a,h]anthracene		13	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Fluoranthene		63	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Fluorene		ND	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Indeno[1,2,3-cd]pyrene	•	25	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
2-Methylnaphthalene		8	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Naphthalene`		6	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Phenanthrene		34	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Pyrene		62	ug/kg	5	EPA 8270C	08/09/10	08/09/10	22:42	CBS
Target Compound List -	SEMIVOLATILES								
Phenol		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
Bis (2-chloroethyl) ethe	r	ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
2-Chlorophenol		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
2-Methylphenol		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
Bis (2-chloroisopropyl)	ether	ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
Acetophenone		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
4-Methylphenol		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
N-Nitroso-di-n-propylar	nine	ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
Hexachloroethane		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
Nitrobenzene		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
Isophorone		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
2-Nitrophenol		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
2,4-Dimethylphenol		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
Bis (2-chloroethoxy) m	ethane	ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10	13:35	CBS
2,4-Dichlorophenol		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10		CBS
4-Chloroaniline		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10		CBS
Hexachlorobutadiene`		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10		CBS
Caprolactam		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10		CBS
4-Chloro-3-methylphen	ol	ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10		CBS

Page 9 of 16

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Date Sampled:	07/31/10 12:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

10080203

SDG Number:

Project:	State Center - Parcel G
Site Location:	Baltimore City
Project Number:	016-006-10

Field Sample ID:	SB-10A 0-1	Matrix: Soil			Lab ID: 10080203-			
		Result	Unit	LLQ	Method	Prepared	Analyzed	lnit.
Target Compound List	- SEMIVOLATILES							
Hexachlorocyclopentadiene		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
2,4,6-Trichloropheno	I	ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
2,4,5-Trichloropheno	I	ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 13:35	CBS
1,1-Biphenyl		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
2-Chloronaphthalene	;	ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
2-Nitroaniline		ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 13:35	CBS
Dimethyl phthalate		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
2,6-Dinitrotoluene		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
3-Nitroaniline		ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 13:35	CBS
2,4-Dinitrophenol		ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 13:35	CBS
4-Nitrophenol		ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 13:35	CBS
Dibenzofuran		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
2,4-Dinitrotoluene		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
Diethyl phthalate		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
4-Chlorophenyl phen	yl ether	ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
4-Nitroaniline		ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 13:35	CBS
4,6-Dinitro-2-methylp	henol	ND	ug/kg	220	EPA 8270C	08/09/10	08/10/10 13:35	CBS
N-Nitrosodiphenylam	line	ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
4-Bromophenyl phen	yl ether	ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
Hexachlorobenzene		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
Atrazine		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
Pentachlorophenol		ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 13:35	CBS
Carbazole		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
Di-n-butyl phthalate		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
Butyl benzyl phthalat	e	ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
3,3-Dichlorobenzidin	е	ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
Bis (2-ethylhexyl) ph	thalate	ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
Di-n-octyl phthalate		ND	ug/kg	94	EPA 8270C	08/09/10	08/10/10 13:35	CBS
Total Metals								
Antimony		ND	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:30	MEL
Arsenic		2.2	mg/kg	0.41	EPA 6020A	08/04/10	08/04/10 14:30	MEL
Beryllium		ND	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:30	MEL
Cadmium		ND	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:30	
Chromium		12	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:30	MEL
Copper		12	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:30	
Lead		100	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:30	
Mercury		0.25	mg/kg	0.082	EPA 6020A	08/04/10	08/04/10 14:30	
Nickel		8.7	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:30	
Selenium		ND	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:30	

Page 10 of 16

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211
 Date Sampled:
 07/31/10 12:30

 Date Received:
 08/02/10 11:50

 Date Issued:
 08/12/10

Project: Site Location: Project Numbe	State Center - Baltimore City er: 016-006-10	Parcel G			;	SDG Number	r: 100802	03	
Field Sample ID:	SB-10A 0-1		Matrix: Soil				Lab ID: 10080203-08		
		Result	Unit	LLQ	Method	Prepared	Analyzed	lnit.	
Total Metals									
Silver		ND	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:30	MEL	
Thallium		ND	mg/kg	1.6	EPA 6020A	08/04/10	08/04/10 14:30	MEL	
Zinc		37	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:30	MEL	

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Matt Ubher

QC Chemist

Page 11 of 16

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Aroclor 1242

Aroclor 1248

Date Sampled:	07/31/10 12:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

Project:	State Center -	Parcel G						
-								
Site Location:	Baltimore City				_			
Project Numbe	r: 016-006-10				S	DG Number	: 1008020	13
Field Sample ID:	SB-10A 4-5		Ma	trix: Soi	1	La	ab ID: 100802	203-09
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Chlorinated Herbicides								
Dicamba		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:56	AC
MCPP		ND	ug/kg	2200	EPA 8151A	08/09/10	08/11/10 12:56	AC
MCPA		ND	ug/kg	2200	EPA 8151A	08/09/10	08/11/10 12:56	AC
Dichloroprop		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:56	AC
2,4-D		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:56	AC
2,4,5-TP (Silvex)		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:56	AC
2,4,5-T		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:56	AC
Dinoseb		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:56	AC
2,4-DB		ND	ug/kg	22	EPA 8151A	08/09/10	08/11/10 12:56	AC
Organochlorine Pesticio	les							
Aldrin		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
a-BHC		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
b-BHC		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
g-BHC (Lindane)		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
d-BHC		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
a-Chlordane		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
g-Chlordane		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
4,4-DDD		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
4,4-DDE		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
4,4-DDT		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
Dieldrin		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
Endosulfan I		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
Endosulfan II		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
Endosulfan Sulfate		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
Endrin		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
Endrin Aldehyde		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
Endrin Ketone		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
Heptachlor		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
Heptachlor Epoxide		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	AC
Methoxychlor		ND	ug/kg	11	EPA 8081A	08/04/10	08/09/10 15:00	
Toxaphene		ND	ug/kg	110	EPA 8081A	08/04/10	08/09/10 15:00	AC
Percent Solids								
Percent Solids		88	%		SM2540G	08/03/10	08/03/10 15:38	LMJ
Polychlorinated Bipheny	/ls							
Aroclor 1016		ND	mg/kg	0.055	EPA 8082	08/05/10	08/09/10 12:24	AC
Aroclor 1221		ND	mg/kg	0.055	EPA 8082	08/05/10	08/09/10 12:24	
Aroclor 1232		ND	mg/kg	0.055	EPA 8082	08/05/10	08/09/10 12:24	
			3 3			00/05/40		

Page 12 of 16

0.055

0.055

EPA 8082

EPA 8082

08/05/10

08/05/10

08/09/10 12:24 AC

08/09/10 12:24 AC

mg/kg

mg/kg

ND

ND

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

4-Chloroaniline

Caprolactam

Hexachlorobutadiene`

Date Sampled:	07/31/10 12:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

Project: Site Location: Project Numbe	State Center Baltimore Cit r: 016-006-10				s	SDG Number	: 1008020)3
Field Sample ID:	SB-10A 4-5		Ma	trix: Soil		La	ab ID: 100802	203-09
		Result	Unit	LLQ	Method	Prepared	Analyzed	lnit.
Polychlorinated Biphen	yls							
Aroclor 1254		ND	mg/kg	0.055	EPA 8082	08/05/10	08/09/10 12:24	AC
Aroclor 1260		ND	mg/kg	0.055	EPA 8082	08/05/10	08/09/10 12:24	AC
Polycyclic Aromatic Hy	drocarbons (SIM)							
Acenaphthene		ND	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Acenaphthylene		ND	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Anthracene		ND	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Benzo[a]anthracene		13	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Benzo[a]pyrene		17	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Benzo[b]fluoranthene		29	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Benzo[g,h,i]perylene		13	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Benzo[k]fluoranthene		13	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Chrysene		19	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Dibenz[a,h]anthracen	e	5	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Fluoranthene		23	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Fluorene		ND	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Indeno[1,2,3-cd]pyrer	e	12	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
2-Methylnaphthalene		ND	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Naphthalene`		ND	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Phenanthrene		19	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Pyrene		20	ug/kg	5	EPA 8270C	08/09/10	08/09/10 23:23	CBS
Target Compound List	SEMIVOLATILES							
Phenol		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
Bis (2-chloroethyl) eth	er	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
2-Chlorophenol		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
2-Methylphenol		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
Bis (2-chloroisopropy) ether	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
Acetophenone	,	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
4-Methylphenol		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
N-Nitroso-di-n-propyla	amine	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
Hexachloroethane		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
Nitrobenzene		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
Isophorone		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
2-Nitrophenol		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
, 2,4-Dimethylphenol		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
Bis (2-chloroethoxy) r	nethane	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS
2,4-Dichlorophenol		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS

Page 13 of 16

110

110

110

EPA 8270C

EPA 8270C

EPA 8270C

08/09/10

08/09/10

08/09/10

08/10/10 14:17 CBS

08/10/10 14:17 CBS

08/10/10 14:17 CBS

ug/kg

ug/kg

ug/kg

ND

ND

ND

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Date Sampled:	07/31/10 12:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

10080203

SDG Number:

Project:	State Center - Parcel G
Site Location:	Baltimore City
Project Number:	016-006-10

Field Sample ID:	SB-10A 4-5		Matrix: Soil				Lab ID: 100802		
		Result	Unit	LLQ	Method	Prepared	Analyzed	lnit.	
Target Compound List	- SEMIVOLATILES								
4-Chloro-3-methylph	enol	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
Hexachlorocyclopen	tadiene	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
2,4,6-Trichloropheno	bl	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
2,4,5-Trichloropheno	bl	ND	ug/kg	260	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
1,1-Biphenyl		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
2-Chloronaphthalene	e	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
2-Nitroaniline		ND	ug/kg	260	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
Dimethyl phthalate		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
2,6-Dinitrotoluene		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
3-Nitroaniline		ND	ug/kg	260	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
2,4-Dinitrophenol		ND	ug/kg	260	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
4-Nitrophenol		ND	ug/kg	260	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
Dibenzofuran		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
2,4-Dinitrotoluene		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
Diethyl phthalate		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
4-Chlorophenyl pher	iyl ether	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
4-Nitroaniline		ND	ug/kg	260	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
4,6-Dinitro-2-methylp	ohenol	ND	ug/kg	240	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
N-Nitrosodiphenylan	nine	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
4-Bromophenyl pher	ıyl ether	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
Hexachlorobenzene		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
Atrazine		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
Pentachlorophenol		ND	ug/kg	260	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
Carbazole		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
Di-n-butyl phthalate		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
Butyl benzyl phthala	te	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
3,3-Dichlorobenzidin	e	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
Bis (2-ethylhexyl) ph	thalate	ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
Di-n-octyl phthalate		ND	ug/kg	110	EPA 8270C	08/09/10	08/10/10 14:17	CBS	
Farget Compound List	- VOLATILES								
Dichlorodifluorometh		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Chloromethane		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Vinyl chloride		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24		
Bromomethane		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Chloroethane		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24		
Trichlorofluorometha	ine	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
1,1-Dichloroethene		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24		
1,1,2-Trichlorotrifluo	roethane	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Acetone		ND	ug/kg	69	EPA 8260B	08/03/10	08/03/10 15:24		

Page 14 of 16

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Date Sampled:	07/31/10 12:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

10080203

SDG Number:

Project:	State Center - Parcel G
Site Location:	Baltimore City
Project Number:	016-006-10

ield Sample ID:	SB-10A 4-5		Matrix: Soil				Lab ID: 10080203-09		
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.	
arget Compound List	- VOLATILES								
Carbon disulfide		ND	ug/kg	14	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Methyl acetate		ND	ug/kg	35	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Methylene chloride		ND	ug/kg	35	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
trans-1,2-Dichloroeth	nene	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Methyl t-butyl ether (MTBE)	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
1,1-Dichloroethane		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
cis-1,2-Dichloroether	ne	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
2-Butanone (MEK)		ND	ug/kg	69	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Chloroform		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
1,1,1-Trichloroethane	e	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Cyclohexane		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Carbon tetrachloride		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Benzene		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
1,2-Dichloroethane		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Trichloroethene		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Methylcyclohexane		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
1,2-Dichloropropane		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Bromodichlorometha	ine	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
cis-1,3-Dichloroprop	ene	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
4-Methyl-2-pentanon	e (MIBK)	ND	ug/kg	14	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Toluene		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
trans-1,3-Dichloropro	opene	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
1,1,2-Trichloroethan		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Tetrachloroethene		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
2-Hexanone (MBK)		ND	ug/kg	14	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Dibromochlorometha	ine	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
1,2-Dibromoethane		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Chlorobenzene		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Ethylbenzene		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
m&p-Xylene		ND	ug/kg	14	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
o-Xylene		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Styrene		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Bromoform		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL	
Isopropylbenzene		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24		
1,1,2,2-Tetrachloroe	thane	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24		
1,3-Dichlorobenzene		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24		
1,4-Dichlorobenzene		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24		
1,2-Dichlorobenzene		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24		
1,2-Dibromo-3-chloro	opropane	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24		
1,2,4-Trichlorobenze		ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24		

Page 15 of 16

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Date Sampled:	07/31/10 12:30
Date Received:	08/02/10 11:50
Date Issued:	08/12/10

Project:	State Center	- Parcel G						
Site Location:	Baltimore Cit	у						
Project Number	016-006-10				:	SDG Number	: 1008020	3
Field Sample ID:	SB-10A 4-5		Mat	trix: Soil		La	ib ID: 100802	203-09
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound List - V	VOLATILES							
Ethyl t-butyl ether (ETB	E)	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL
tert-Butanol (TBA)		ND	ug/kg	35	EPA 8260B	08/03/10	08/03/10 15:24	JKL
Diisopropyl ether (DIPE	E)	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL
tert-Amyl methyl ether ((TAME)	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL
tert-Amyl alcohol (TAA)		ND	ug/kg	35	EPA 8260B	08/03/10	08/03/10 15:24	JKL
tert-Amyl ethyl ether (T	AEE)	ND	ug/kg	7	EPA 8260B	08/03/10	08/03/10 15:24	JKL
Total Metals								
Antimony		ND	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:37	MEL
Arsenic		3.4	mg/kg	0.4	EPA 6020A	08/04/10	08/04/10 14:37	MEL
Beryllium		ND	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:37	MEL
Cadmium		ND	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:37	MEL
Chromium		16	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:37	MEL
Copper		11	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:37	MEL
Lead		43	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:37	MEL
Mercury		0.27	mg/kg	0.081	EPA 6020A	08/04/10	08/04/10 14:37	MEL
Nickel		8.0	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:37	MEL
Selenium		ND	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:37	MEL
Silver		ND	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:37	MEL
Thallium		ND	mg/kg	1.6	EPA 6020A	08/04/10	08/04/10 14:37	MEL
Zinc		31	mg/kg	2	EPA 6020A	08/04/10	08/04/10 14:37	MEL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

fratt Obher

QC Chemist

Approved by:

Chain of Custody Record

Customer:	Urban Green Environment			E-mail	address:	denis	se@u	genv.	com]	SDG	Number:		0080203
Contact/Report to:	Denise A Sullivan			Project	Name:	State	e Cen	ter - P	arcel	G			Sam	pled by:		WDH
Phone:	410-244-7215			Project	Number:	016-	006-1	0					PON	lumber:		016-006-10
Fax:	410-685-0226			Site Lo	cation:	Balti	more	City					Page	1 of	1	
									Analys	sis Re	ques	ted				
					Preserva	tive					Ī				and called	
Lab Number	Field Sample ID	Date Sampled	Time Sampled	No. of Bottles	Matrix *	Vocs	SVOCs (Siller	PPL Metals	Pesticides	Herbicede	PCBs					⊐ Sampling Remarks/ Comments
	SB-8 0-1	07/31/10		1	S	-	x	X				1			1	Commenta
	SB-8 4-5	07/31/10		2+2 encore		x	x	x	x	x	x					
	SB-9 4-5	07/31/10	0915	1												HOLD
	SB-10 0-1	07/31/10	1020	1			-								1	HOLD
	SB-10 4-5	07/31/10	1020	2+2 encore	s											HOLD
	SB-11 4-5	07/31/10	1045	1												HOLD
	SB-12 4-5	07/31/10	1135												1	HOLD
	SB-10A 0-1	07/31/10	1230	1			x	x								
	SB-10A 4-5	07/31/10	1230	2+2 encore	3	x	x	x	x	x	x					
	SB-11B 4-5	07/31/10	1320	1												HOLD
Relinquished by:	Bill Harm	on	Date/Time	:	8/2/10	115	50	Deliv	erable	es:	Re	eceip	t Temp	erature:	Turr	naround Time:
Received by:	hattohu		Date/Time	: 8	12/10	1150	3	1 11 1	II CLP	EDD		Temp:	(On Ice	STD	Next Day 2-Day Other
Relinquished by:			Date/Time	:	11			Cust	ody S	eals:	Com	ment	s/Spec	cial Instru	ctions	:
Received by:			Date/Time	:					ple C							
Relinquished by:			Date/Time	:				1 5	ered by	-						
Received by:			Date/Time							2						

* W = Water; WW = Wastewater; GW = Groundwater; S = Soil; SL = Sludge

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211
 Date Sampled:
 09/08/10 13:30

 Date Received:
 09/08/10 16:50

 Date Issued:
 09/14/10

10090809

SDG Number:

Project:	State Center
Site Location:	W. Preston & N. Eutaw
Project Number:	016-006-10

Field Sample ID: SB-D		Mat	rix: Soil	Lab ID: 10090809-01			
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	89	%		SM2540G	09/10/10	09/10/10 15:13	LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	58	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Acenaphthylene	63	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Anthracene	42	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Benzo[a]anthracene	210	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Benzo[a]pyrene	210	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Benzo[b]fluoranthene	280	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Benzo[g,h,i]perylene	270	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Benzo[k]fluoranthene	130	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Chrysene	240	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Dibenz[a,h]anthracene	100	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Fluoranthene	400	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Fluorene	47	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Indeno[1,2,3-cd]pyrene	240	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
2-Methylnaphthalene	64	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Naphthalene`	35	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Phenanthrene	160	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS
Pyrene	360	ug/kg	5	EPA 8270C	09/14/10	09/14/10 10:13	CBS

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Matt Cohe

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211
 Date Sampled:
 09/08/10 13:55

 Date Received:
 09/08/10 16:50

 Date Issued:
 09/14/10

10090809

SDG Number:

Project:	State Center
Site Location:	W. Preston & N. Eutaw
Project Number:	016-006-10

Field Sample ID: SB-E		Mat	rix: Soil	Lab ID: 10090809-02			
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Hexavalent Chromium in Soil							
Hexavalent Chromium	ND	mg/kg	2.7	EPA 7196A	09/14/10	09/14/10 11:00	MEL
Percent Solids							
Percent Solids	90	%		SM2540G	09/10/10	09/10/10 15:13	5 LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	34	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Acenaphthylene	34	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Anthracene	34	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Benzo[a]anthracene	150	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Benzo[a]pyrene	170	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	
Benzo[b]fluoranthene	220	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Benzo[g,h,i]perylene	240	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Benzo[k]fluoranthene	91	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Chrysene	180	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Dibenz[a,h]anthracene	110	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Fluoranthene	270	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Fluorene	28	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Indeno[1,2,3-cd]pyrene	220	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
2-Methylnaphthalene	45	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Naphthalene`	31	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Phenanthrene	120	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Pyrene	260	ug/kg	6	EPA 8270C	09/14/10	09/14/10 10:51	CBS
Fotal Metals							
Antimony	ND	mg/kg	2.6	EPA 6020A	09/10/10	09/13/10 14:19	MEL
Arsenic	2.4	mg/kg	0.52	EPA 6020A	09/10/10	09/13/10 14:19	MEL
Beryllium	ND	mg/kg	2.6	EPA 6020A	09/10/10	09/13/10 14:19	MEL
Cadmium	ND	mg/kg	2.6	EPA 6020A	09/10/10	09/13/10 14:19	MEL
Chromium	22	mg/kg	2.6	EPA 6020A	09/10/10	09/13/10 14:19	MEL
Copper	12	mg/kg	2.6	EPA 6020A	09/10/10	09/13/10 14:19	MEL
Lead	400	mg/kg	2.6	EPA 6020A	09/10/10	09/13/10 14:19	MEL
Mercury	0.32	mg/kg	0.1	EPA 6020A	09/10/10	09/13/10 14:19	MEL
Nickel	7.2	mg/kg	2.6	EPA 6020A	09/10/10	09/13/10 14:19	MEL
Selenium	ND	mg/kg	2.6	EPA 6020A	09/10/10	09/13/10 14:19	MEL
Silver	ND	mg/kg	2.6	EPA 6020A	09/10/10	09/13/10 14:19	MEL
Thallium	ND	mg/kg	2.1	EPA 6020A	09/10/10	09/13/10 14:19	MEL
Zinc	97	mg/kg	2.6	EPA 6020A	09/10/10	09/13/10 14:19	MEL

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211
 Date Sampled:
 09/08/10 13:55

 Date Received:
 09/08/10 16:50

 Date Issued:
 09/14/10

Project: Site Location: Project Number:	State Center W. Preston & N 016-006-10	I. Eutaw				SDG Number:	100908	09	
Field Sample ID: S	B-E		Mat	rix: Soil		Lab	D: 10090	809-02	
		Result	Unit	LLQ	Method	Prepared	Analyzed	lnit.	
Notes/Qualifiers: LLQ- Lowest Level of Quantita				Approv	ved by:	Just Obher			
ND - Not Detected at a concer Results reported on a dry weight	0	qual to the LLQ.				QC Ch	emist		

Page 3 of 8

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211
 Date Sampled:
 09/08/10 14:35

 Date Received:
 09/08/10 16:50

 Date Issued:
 09/14/10

10090809

SDG Number:

Project:	State Center
Site Location:	W. Preston & N. Eutaw
Project Number:	016-006-10

Field Sample ID: SB-F		Mat	rix: Soil		La	ab ID: 100908	309-03
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	90	%		SM2540G	09/10/10	09/10/10 15:13	LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	9	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Acenaphthylene	8	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Anthracene	23	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Benzo[a]anthracene	170	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Benzo[a]pyrene	190	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Benzo[b]fluoranthene	260	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Benzo[g,h,i]perylene	250	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Benzo[k]fluoranthene	100	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Chrysene	220	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Dibenz[a,h]anthracene	62	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Fluoranthene	390	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Fluorene	9	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Indeno[1,2,3-cd]pyrene	210	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
2-Methylnaphthalene	22	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Naphthalene`	12	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Phenanthrene	180	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS
Pyrene	360	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:07	CBS

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Matt Cohe

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211
 Date Sampled:
 09/08/10 15:05

 Date Received:
 09/08/10 16:50

 Date Issued:
 09/14/10

10090809

SDG Number:

Project:	State Center
Site Location:	W. Preston & N. Eutaw
Project Number:	016-006-10

Field Sample ID: SB-C		Mat		Lab ID: 10090809-04			
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	90	%		SM2540G	09/10/10	09/10/10 15:13	LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	8	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Acenaphthylene	10	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Anthracene	28	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Benzo[a]anthracene	140	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Benzo[a]pyrene	150	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Benzo[b]fluoranthene	210	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Benzo[g,h,i]perylene	170	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Benzo[k]fluoranthene	84	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Chrysene	170	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Dibenz[a,h]anthracene	46	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Fluoranthene	290	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Fluorene	12	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Indeno[1,2,3-cd]pyrene	140	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
2-Methylnaphthalene	22	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Naphthalene`	11	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Phenanthrene	130	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS
Pyrene	280	ug/kg	6	EPA 8270C	09/14/10	09/14/10 12:44	CBS

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Matt Cohe

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211
 Date Sampled:
 09/08/10 15:40

 Date Received:
 09/08/10 16:50

 Date Issued:
 09/14/10

10090809

SDG Number:

Project:	State Center
Site Location:	W. Preston & N. Eutaw
Project Number:	016-006-10

Field Sample ID: SB-A		Ma	trix: Soil	Lab ID: 10090809-05			
	Result	Unit	LLQ	Method	Prepared	Analyzed	lnit.
Hexavalent Chromium in Soil							
Hexavalent Chromium	ND	mg/kg	2.7	EPA 7196A	09/14/10	09/14/10 11:00	MEL
Percent Solids							
Percent Solids	89	%		SM2540G	09/10/10	09/10/10 15:13	LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	13	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Acenaphthylene	10	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Anthracene	41	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Benzo[a]anthracene	180	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Benzo[a]pyrene	180	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Benzo[b]fluoranthene	250	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Benzo[g,h,i]perylene	190	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Benzo[k]fluoranthene	100	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Chrysene	200	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Dibenz[a,h]anthracene	52	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Fluoranthene	410	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Fluorene	13	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Indeno[1,2,3-cd]pyrene	170	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
2-Methylnaphthalene	22	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Naphthalene`	12	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Phenanthrene	240	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Pyrene	350	ug/kg	6	EPA 8270C	09/14/10	09/14/10 13:22	CBS
Fotal Metals							
Antimony	ND	mg/kg	2.4	EPA 6020A	09/10/10	09/13/10 14:50	MEL
Arsenic	2.2	mg/kg	0.48	EPA 6020A	09/10/10	09/13/10 14:50	MEL
Beryllium	ND	mg/kg	2.4	EPA 6020A	09/10/10	09/13/10 14:50	MEL
Cadmium	ND	mg/kg	2.4	EPA 6020A	09/10/10	09/13/10 14:50	MEL
Chromium	18	mg/kg	2.4	EPA 6020A	09/10/10	09/13/10 14:50	MEL
Copper	10	mg/kg	2.4	EPA 6020A	09/10/10	09/13/10 14:50	MEL
Lead	470	mg/kg	2.4	EPA 6020A	09/10/10	09/13/10 14:50	MEL
Mercury	0.25	mg/kg	0.097	EPA 6020A	09/10/10	09/13/10 14:50	MEL
Nickel	5.7	mg/kg	2.4	EPA 6020A	09/10/10	09/13/10 14:50	MEL
Selenium	ND	mg/kg	2.4	EPA 6020A	09/10/10	09/13/10 14:50	MEL
Silver	ND	mg/kg	2.4	EPA 6020A	09/10/10	09/13/10 14:50	MEL
Thallium	ND	mg/kg	1.9	EPA 6020A	09/10/10	09/13/10 14:50	MEL
Zinc	100	mg/kg	2.4	EPA 6020A	09/10/10	09/13/10 14:50	MEL

Page 6 of 8

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211
 Date Sampled:
 09/08/10 15:40

 Date Received:
 09/08/10 16:50

 Date Issued:
 09/14/10

Project: Site Location: Project Number:	N. Eutaw				SDG Number:	100908	309			
Field Sample ID: S	B-A	-A				Lab ID: 10090809				
		Result	Unit	LLQ	Method	Prepared	Analyzed	lnit.		
Notes/Qualifiers: LLQ- Lowest Level of Quantitation				Appro	ved by:	Just Obher				
ND - Not Detected at a concentration greater than or equal to the LLQ. Results reported on a dry weight basis.						QC Ch	iemist			

Page 7 of 8

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211
 Date Sampled:
 09/08/10 16:05

 Date Received:
 09/08/10 16:50

 Date Issued:
 09/14/10

10090809

SDG Number:

Project:	State Center
Site Location:	W. Preston & N. Eutaw
Project Number:	016-006-10

Field Sample ID: SB-B		Mat	rix: Soil	La	ab ID: 100908	809-06	
	Result	Unit	LLQ Method		Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	90	%		SM2540G	09/10/10	09/10/10 15:13	LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	ND	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Acenaphthylene	11	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Anthracene	16	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Benzo[a]anthracene	96	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Benzo[a]pyrene	100	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Benzo[b]fluoranthene	140	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Benzo[g,h,i]perylene	120	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Benzo[k]fluoranthene	53	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Chrysene	120	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Dibenz[a,h]anthracene	35	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Fluoranthene	210	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Fluorene	5	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Indeno[1,2,3-cd]pyrene	110	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
2-Methylnaphthalene	12	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Naphthalene`	13	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Phenanthrene	100	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS
Pyrene	180	ug/kg	5	EPA 8270C	09/14/10	09/14/10 15:15	CBS

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Matt Obher

Page _____ of _____

CALIBER ANALYTICAL SERVICES

Chain of Custody Record

Customer:	URBAN GREEN ENVI	RONMENTE	l	E-mail	address:	de	nise	0	JOPY	NV. 0	Com]	SDG	Num	ber:		100	90809
Contact/Report to:	DENISE SULLIVAN				t Name:				E CENTER								<u> </u>	
Phone:	410-244-7215				t Number:							Sampled by:				Bill 1	HARMON	
Fax:	410-685-026			Location:			W. PRESTON & N.EUTAW					PO Number:				10.0.0		
			-						Analys			ed						
					Preserva	tive							1			1		
Lab Number	Field Sample ID	Date Sampled	Time Sampled	No. of Bottles	Matrix	22	Henry PP	MIS Shi										oling Remarks/ comments
	SB-D	9/8/10			Soil	1	X	1			[1	1	1	1		
	SB-E	1	13:55		1	×	X							1				
	SB-F		14:35	1			X											
	SB-C		15:05	1			X											
	SB-A		15:40	and the second se		×	X											
	SB-B		16:05	1			X											
														1				
Relinquished by:	Bill Harm	on	Date/Time:		9/8/10	165	50	Deliv	erable	s:	Re	ceipt	Temp	oeratu	re:	Turna	around T	ime:
Received by:	hatt Colue	Date/Time:	e/Time: 9/8/10 /			0	1 11 1	III CLP	EDD		Temp:On Ice			Next Day 2	-Day Other			
Relinquished by:		Date/Time:	1101				Custo	ustody Seals: Comments/Special Instructions:										