
1340 Smith Avenue, Suite 200 Baltimore, Maryland 21209

FINAL Limited Phase II Environmental Site Assessement Report

State Center Property

Phase I – Lots G, C, and I2 900 North Eutaw Street, 200 West Preston Street, and 101 West Preston Street Baltimore, Maryland 21201

Prepared For:

State Center LLC

3420 2nd Street Baltimore, Maryland 21225

October 2009

CONTENTS

1.0	INT	RODUCTION	1
2.0	CITE	E BACKGROUND	-
2.0		Site Location and Description	
		Site History	
		Environmental Setting	
	2.5	2.3.1 Topography	
		2.3.2 Geology and Lithology	
	2.4	Prior Environmental Investigations	
3.0		SE II INVESTIGATION METHODOLOGY	
		Purpose and Objectives	
	3.2	Field Investigation Procedures	
		3.2.1 Utility Mark out	
		3.2.1 Soil Investigation	
		3.2.2 Groundwater Investigation	8
	3.3	Quality Assurance/Quality Control Procedures	
	3.4	Sample Handling/Chain of Custody	
	3.5	Decontamination and Investigation-Derived Material Handling Procedures	9
4.0	PHA	SE II INVESTIGATION RESULTS	11
	4.1	Site Conditions	11
		4.1.1 Lithology	11
	4.2	Soil Analytical Results	11
		4.2.1 Volatile Organic Compounds	11
		4.2.2 Polycyclic Aromatic Hydrocarbons	11
		4.2.3 Metals	
		4.2.4 PCBs, Pesticides and Herbicides	12
		4.2.5 Total Petroleum Hydrocarbons – Diesel Range Organics / Gasoline Range	
		Organics	12
	4.3	Groundwater Analytical Results	12
5.0	CON	ICLUSIONS	1/
5.0		Soil	
		Groundwater	
6.0	REF	ERENCES	15
	a = .		

List of Figures

- 1 Site location map
- 2 Site plan

List of Tables

- 1 Summary of soil analytical results
- 2 Summary of groundwater analytical results

List of Appendices

Appendix A Site Photographs
Appendix B Soil Boring Logs

Appendix C Laboratory Analytical Report

1.0 INTRODUCTION

State Center LLC contracted Urban Green Environmental LLC (Urban Green) to perform a Limited Phase II Environmental Site Assessment (ESA) investigation of the State Center Property – Phase I Parcels G, C, and I2 located at 900 North Eutaw Street, 101 West Preston Street and 200 West Preston Street in Baltimore, Maryland 21201.

The objective of this investigation was to provide an evaluation of the recognized environmental concerns (RECs) as identified in the *Phase I Environmental Site Assessment Report* prepared by Earth Resources Management (ERM), Inc. and dated March 2007, and provide initial site characterization information to support a future application of the Site into the Maryland Voluntary Cleanup Program (VCP).

The findings of this Limited Phase II ESA are based solely on the data obtained and reviewed as part of this investigation, including observations and conditions that existed at the time of the field investigative activities performed in October 2009. Information provided by third parties is assumed to be accurate and complete.

This report was prepared for State Center LLC by Urban Green Environmental, LLC and is based in part on third party information not within the control of State Center LLC or Urban Green Environmental, LLC. While it is believed that the third party information contained herein will be reliable under the conditions and subject to the limitations set forth herein, neither State Center LLC nor Urban Green Environmental, LLC guarantee the accuracy thereof.

2.0 SITE BACKGROUND

2.1 Site Location and Description

The Site consists of three parcels of land located within the Phase I development area of the State Center Property: Parcel G, Parcel C, and Parcel I2. Parcels G and C consist of asphalt paved parking lots and are located at 900 North Eutaw Street and 200 West Preston Street, respectively. Parcel I2 consists of a concrete paved and landscaped lot located at 101 West Preston Street. According to information on-file with the Maryland Department of Assessment and Taxation, the Site parcels are further identified as Block 0459, Lot 3, Block 0460, Lot 2, and Block 0478, Lot 2 (northern portion). A Site location map is attached as Figure- 1; a Site plan is attached as Figure 2.

Based on a review of a partial copy of the Phase I Environmental Site Assessment Report, prepared by Environmental Resource Management, Inc., no recognized environmental conditions (RECs) were identified at the Site. However, the prior Phase I ESA did indicate that several underground storage tanks (USTs) (active and inactive) and two Maryland Department of the Environment Oil Control Program (MDE OCP) case files (case closed status) were associated with the Parcel C property. Specifically, three active USTs, three inactive USTs and one MDE OCP case file appear to be associated with Parcel C. In addition, several current/former USTs are potentially upgradient of Parcels G and I2.

2.2 Site History

Based on information provided in the *Phase I ESA* (ERM 2007), the Site parcels were primarily developed circa 1958, at which time the State of Maryland purchased the properties for development of the State Center. The only exceptions to the above were a small church south of Parcel I2, and construction of the Armory of the Fifth Regiment Infantry north of Parcel C circa the early 1900s. It was also noted in the Phase I ESA, that two historic fires, which occurred in 1904 and 1933, reportedly destroyed much of the Site parcels.

Please note, the above history conflicts with historic atlases reviewed by Urban Green for the preparation of this Limited Phase II ESA Report. Specifically, in addition to the information provided in the Phase I ESA (ERM 2007), Urban Green obtained copies of 1901, 1914, 1951, and 1953 historic atlases from the Enoch Pratt Library. A summary of the historic improvement at each Site parcel is provided in the following table.

Table 1 Summary of Historic Atlas Information — Lots G, C, and I2
State Center Property, Baltimore, Maryland

Site Parcel	1901 Historic Atlas	1914 Historic Atlas	1951 Historic Atlas	1953 Historic Atlas	
Lot G 900 N. Eutaw Street	dwellings and retail stores.		Developed with approximately 90 structures identified as residential dwellings and retail stores. Gasoline filling stations are noted on the northeast and southeast corners; a radiator repair shop and kitchen/ice cream shop noted in the central portions of the Site parcel.	Developed with approximately 90 structures identified as residential dwellings and retail stores. Gasoline filling stations are noted on the northeast and southeast corners; a radiator repair shop and kitchen/ice cream shop noted in the central portions of the Site parcel.	
Lot C 200 W. Preston Street	Developed with approximately 20 structures identified as residential dwellings.	Developed with approximately 25 structures identified as residential dwellings. A brush factory and cobbler are identified on the southern portion.	Developed with approximately 30 structures identified as residential flats. Contractors building and upholstering identified on the northeast corner.	Developed with approximately 30 structures identified as residential flats. Contractors building and upholstering identified on the northeast corner.	
Lot I2 300 W. Preston Street (northern portion)	Developed with approximately 11 structures identified as residential dwellings and a retail store.	Developed with approximately 12 structures identified as residential dwellings, a retail store, and an office. A gasoline UST is identified along the southern boundary.	Undeveloped. No improvements or uses illustrated.	Undeveloped. No improvements or uses illustrated.	

2.3 Environmental Setting

2.3.1 Topography

According to the USGS Baltimore West, Maryland topographic map, the Site elevation ranges from approximately 117 to 142 feet above mean sea level and appears to slope gradually northwest to southeast across the Site. The nearest surface water body, the Jones Falls, is located approximately 2,000 feet east of the Site.

2.3.2 Geology and Lithology

According to information provided in the prior Phase I ESA (ERM 2007), the subject property is underlain by the Lehigh formation, a surficial silt loam. Depth to bedrock is anticipated at greater than 40 inches.

On-site conditions were observed to be consistent with the above. Specifically, overburden soil at the Site was observed to consist of sands, sandy silts to the maximum drilling depth of 32 feet below grade. In addition, clays and silty clays (approximate one to three foot thickness) were observed at depths of eight and twelve feet below grade in soil borings SB-2, SB-5, SB-6, and SB-7. Lastly, fill materials were observed to be more prominent on Lot C, proximate to the presumed locations of the historic underground storage tanks (USTs).

No visual or olfactory evidence of a release, such as a chemical odor or staining was observed throughout the drilling activities. Further, results of field screening for evidence of total volatile organic compounds (VOCs) using a photoionization detector indicated background readings (0.0 to 0.3 parts per million).

2.4 Prior Environmental Investigations

In March 2007, a Phase I ESA of the State Center Property, including the Site (Parcels G, C, and I2) and the surrounding State Center Property, was completed by ERM (ERM 2007). The scope of work of the Phase I investigation consisted of a visual site inspection, historic records review, and state and federal regulatory records review. At the time of the ERM Phase I ESA, Site use appears to be consistent with the operations observed during this investigation. Specifically, Parcels G, C, and I2 appear to have been utilized for parking and/or were landscaped. The ERM report further noted the presence of a fueling station on Parcel C.

Based on the information available and reviewed as part of the Phase I ESA, no recognized environmental conditions (RECs) were identified at the State Center Property. However, the ERM report did note the presence of current and historic USTs on the Parcel C Site. Furthermore, in Section 3.3.2, one former cleaner and one former auto body shop are listed for the State Center

Property. Lastly, several buildings at the State Center Property (201 West Preston Street and 300 West Preston Street) were identified as very small quantity generators of hazardous waste.

3.0 PHASE II INVESTIGATION METHODOLOGY

3.1 Purpose and Objectives

The goal of the Phase II Investigation was to provide an evaluation of RECs as identified in the *Phase I Environmental Site Assessment Report* (ERM 2007), and provide initial site characterization information to support a future application of the Site into the Maryland VCP. Specifically, the scope of this investigation consisted of the following tasks:

- Advancement of seven soil borings throughout the Site for site characterization; two soil borings were completed as temporary groundwater monitoring wells;
- Field screening of select soil samples (two foot intervals) from each soil boring for the presence of total volatile organic compounds;
- Collection of select, discrete soil samples from each soil boring; fixed laboratory analysis of
 the select soil samples for volatile organic compounds (VOCs), polycyclic aromatic
 hydrocarbons (PAHs), priority pollutant (PPL) metals, polychlorinated biphenyls (PCBs),
 pesticides/herbicides, and/or total petroleum hydrocarbons (TPH) diesel range organics /
 gasoline range organics (DRO / GRO); and,
- Collection of grab groundwater samples from the two temporary groundwater monitoring wells for fixed laboratory analysis of VOCs.

The work tasks and associated field sampling activities described below were performed in general accordance with our proposal dated September 28, 2009, the *MDE Voluntary Cleanup Program Guidance Document* (MDE 2006) and the *State of Maryland Department of the Environment Cleanup Standards for Soil and Groundwater, Interim Final Guidance, Update No. 2.1* (MDE 2008).

3.2 Field Investigation Procedures

Fieldwork for the Phase II ESA was conducted on October 3, 2009. The following report sections summarize the field sampling and laboratory analytical methodologies implemented during the field investigation.

3.2.1 Utility Mark out

Prior to initiating field activities, Urban Green coordinated with MissUtility and a private utility mark out subcontractor, to complete the required dig permit and obtain utility clearance for the Site investigation areas. In addition, the Urban Green engineer conducted a Site visit to confirm the proposed soil boring locations and below grade utility markings.

3.2.1 Soil Investigation

On October 3, 2009, under the supervision of the Urban Green Engineer, seven soil borings were advanced at the Site. Soil borings were advanced from grade using truck-mounted direct push

technology (Geoprobe). Drilling services were performed by Green Services, Inc. of Bel Air, Maryland. The direct push technology method utilizes a two-inch inner diameter, four foot long, stainless steel sampler lined with a dedicated high-density polyethylene (HDPE) liner. The HDPE-lined stainless steel sampler is hydraulically driven into the subsurface for soil core retrieval. Soil borings were advanced to a maximum depth of 32 feet below grade (ft bg). A summary of the soil borings is provided below; soil boring locations are also provided on Figure 2.

- *SB-1 / TW-1– Parcel G (historic gasoline filling station):* Soil boring SB-1 was advanced to a depth of approximately 32 ft bg; groundwater was encountered at a depth of approximately 31.5 ft bg.
- *SB-2 Downgradient Property Boundary:* Soil boring SB-2 was advanced to a depth of 20 ft bg. No groundwater was encountered.
- *SB-3 General Site Characterization, Parcel I2:* Soil boring SB-3 was advanced to refusal (16 ft bg). No groundwater was encountered.
- SB-4 General Site Characterization, Parcel I2: Soil boring SB-4 was advanced to a depth of 20 ft bg. No groundwater was encountered. It is noteworthy, that SB-4 was also advanced proximate to a "gasol tank" depicted on a 1914 historic atlas of the State Center Property. The gasol tank appears to be depicted on the parcel adjoining Parcel I2 to the southwest.
- *SB-5 / TW-5 Downgradient of Current and Former USTs:* Soil boring SB-5 was advanced to a depth of approximately 27 ft bg; groundwater was encountered at a depth of approximately 24 ft bg.
- *SB-6 Former USTs:* Soil boring SB-6 was advanced to a depth of 20 ft bg. No groundwater was encountered.
- *SB-7 Former USTs:* Soil boring SB-7 was advanced to refusal (16 ft bg). No groundwater was encountered.

Immediately following the direct push sampler retrieval, the HDPE sample liner was opened by the Urban Green Engineer, and screened, at approximate two foot intervals for evidence of total VOCs using a photoionization detector (PID). Discrete grab soil samples were then collected directly from the sample core liner using disposable, dedicated aseptic sampling devices.

A log of field activities, including photographs and logs of the continuous soil borings were maintained throughout the field activities. Site photographs are included as Appendix A; soil boring logs, including soil lithology, recovery and field observations are provided in Appendix B.

Soil borings were advanced to a maximum depth of 32 ft bg. Bedrock was not observed to the maximum drilling depth of 32 ft bg; groundwater was observed in soil borings SB-1 and SB-5 at a depths of 31 ft bg and 24 ft bg, respectively.

Select soil samples were collected from each soil boring and submitted for laboratory analysis of VOCs via USEPA Method 8260B; polycyclic aromatic hydrocarbons (PAHs) via USEPA Method 8270C; priority pollutant (PPL) metals via USEPA Method 6020A; polychlorinated biphenyls (PCBs)

via USEPA Method 8082; pesticide/herbicide analysis was performed via USEPA 8081A/8151A and/or total petroleum hydrocarbon diesel range organics and gasoline range organics (TPH DRO/GRO) via USEPA Method 8015C.

One surface and one subsurface soil sample was collected from soil boring SB-1 through SB-5. With the exception of soil boring SB-2, surface soil samples were collected from a depth of approximately zero to one foot below grade; subsurface soil samples were collected from a depth of approximately four to five feet below grade. The above samples intervals were selected based on the MDE VCP recommendations for Phase II environmental site assessments. In soil boring SB-2, the subsurface soil sample was collected from a depth of 19 to 20 feet below grade. This deeper interval was selected based on the future grades of Parcel G. Specifically, it has been indicated to Urban Green, that future development may include deep cuts within this portion of the State Center Property. Surface soil samples were submitted for fixed laboratory analysis of PAHs and PPL metals; subsurface soil samples were submitted for fixed laboratory analysis of VOCs, PAHs, and PPL metals. In addition, one soil sample (SB-5 0-1) was also submitted for fixed laboratory analysis of PCBs, pesticides, and herbicides.

One subsurface soil sample was collected from soil borings SB-6 and SB-7. As noted within our scope of work, given that soil borings SB-6 and SB-7 were advanced to further evaluate the current and former USTs, the soil sample interval was biased towards the highest field screening reading or collected from depths anticipated to represent conditions beneath the former USTs (and immediately above the groundwater table).

Soil samples were collected with dedicated sampling equipment into new, clean sample containers. The soil samples were labeled with sample designation, date and time, and the required analyses. Soil samples were then placed on ice in a portable cooler prior to hand-delivery to Caliber Analytical Services in Towson, Maryland. Chain-of-Custody (COC) forms were maintained (and accompanied the samples in transit) to provide a record of samples from collection to analyses. A copy of the laboratory analytical report and associated COC is included in Appendix C.

3.2.2 Groundwater Investigation

Following the collection of soil samples, temporary groundwater monitoring wells were installed in soil borings SB-1 and SB-5 (downgradient Site location and historic gasoline filling station, and downgradient of existing USTs, respectively). Soil cores in these locations were advanced an additional one to three feet below the depth of the observed groundwater table. Once this depth was achieved, the soil cores were removed and a dedicated one-inch diameter polyvinyl chloride (PVC) well point with a 20-foot screen interval was installed within the borehole to allow for the collection of grab groundwater samples.

Groundwater samples were collected from each temporary well point using dedicated plastic tubing and a ball-check valve. Each groundwater sample was placed, in new, laboratory-supplied

glass sample 40-ml VOAs and preserved. Samples were labeled with sample designation, date and time, and the required analyses. The groundwater samples were then placed on ice in a portable cooler prior to being delivered to Caliber Analytical Services in Towson, Maryland for analysis of VOCs via USEPA Method 8260B. COC forms were maintained (and accompanied the samples in transit) to provide a record of samples from collection to analyses.

3.3 Quality Assurance/Quality Control Procedures

QA/QC protocol covered general aspects of measurement systems design and implementation, including sampling methods, data handling, and QC measures employed. QA/QC procedures followed during the investigation included the use of dedicated sampling equipment for all sampling activities.

3.4 Sample Handling/Chain of Custody

Soil samples collected for laboratory analyses were recorded on soil boring logs and in the project field notes. Field notes will be kept at Urban Green on file for reference. Each sample collected during field activities was given a unique sample designation (Table 1). The sample identification (ID) was used to establish each discrete sampling point. The sample ID also was included on the laboratory chain of custody as well as the bottle label. The interval (e.g. 0-1) identified following the soil boring identification in the following sections represents the discrete depth interval in feet below grade at which the soil sample was collected.

Following sample collection, containers were sealed and placed in a cooler with bagged ice and cooled to 4°C or less. The COC was placed in a plastic bag and taped to the inside of the cooler lid for submission to Phase Separation Science, Inc. Soil and groundwater samples were then hand-carried under strict COC procedures to Caliber Analytical Services in Towson, Maryland for analysis. Samples were analyzed with standard one week turn-around time from receipt of samples.

3.5 Decontamination and Investigation-Derived Material Handling Procedures

The primary objective of the decontamination process was to prevent the accidental introduction of potential contaminants to non-contaminated areas and/or samples. During field activities, a designated decontamination area was established and equipped with decontamination equipment (wash buckets, brushes, spray bottles, potable water, distilled water, towels, etc.) to adequately decontaminate the equipment used on-site. To the maximum extent possible, dedicated equipment was used at each media sample location. Specifically, the direct push sample tubes (macrocores) were lined with a HDPE liner. Further, disposable plastic bags were used to homogenize each soil sample (non-VOC analysis), as required for fixed laboratory analysis.

Sampling equipment that was not dedicated to one sample location was washed with a medical-grade detergent wash, rinsed with distilled water and allowed to air dry.

Following completion of each soil boring, soil cuttings generated during sampling activities were placed directly down the soil boring. Sampling locations were finished at grade with a concrete slurry / bentonite and asphalt.

4.0 PHASE II INVESTIGATION RESULTS

4.1 Site Conditions

4.1.1 Lithology

Soil lithology at the Site consisted of sands, sandy silts to the maximum drilling depth of 32 feet below grade. In addition, clays and silty clays (approximate one to three foot thickness) were observed at depths of eight and twelve feet below grade in soil borings SB-2, SB-5, SB-6, and SB-7. Lastly, fill materials were observed to be more prominent on Lot C, proximate to the presumed locations of historic USTs.

No visual or olfactory evidence of a release, such as a chemical odor or staining was observed throughout the drilling activities. Further, results of field screening for evidence of total volatile organic compounds (VOCs) using a photoionization detector indicated background readings (0.0 to 0.3 parts per million).

4.2 Soil Analytical Results

A summary of the laboratory analytical results for soil is presented in Table 1 and discussed below. The full laboratory analytical data reports are provided in Appendix C.

In total, 12 select soil samples were collected from varying depths within the designated sample locations and submitted for fixed laboratory analysis of VOCs, PAHs, PPL Metals, PCBs, pesticides, herbicides, and TPH DRO/GRO. For comparative purposes, the analytical results are herein compared with the MDE Cleanup Standards for Non-Residential Soil.

4.2.1 Volatile Organic Compounds

Five subsurface samples (SB-1 4-5, SB-2 19-20, SB-3 4-5, SB-4 4-5 and SB-5 4-5) were submitted for fixed analysis of VOCs.

As shown in Table 1, no detectable concentrations of VOCs were reported in subsurface soil.

4.2.2 Polycyclic Aromatic Hydrocarbons

Ten soil samples (one surface soil and one subsurface soil sample from soil boring SB-1 through SB-5) were submitted for fixed analysis of PAHs.

As shown in Table 1, with the exception of surface soil collected from soil boring SB-3, no concentrations of PAHs were reported in surface or subsurface soil above the current applicable MDE Cleanup Standards for Non-Residential Soil. Benzo(a)pyrene (800 ug/kg) was reported in

soil sample SB-3 0-1 at a concentration above the MDE Cleanup Standard for Non-Residential Soil (390 ug/kg).

4.2.3 Metals

Ten soil samples (one surface soil and one subsurface soil sample from soil boring SB-1 through SB-5) were submitted for fixed analysis of PPL Metals.

With the exception of arsenic (ranging from 1.1 mg/kg to 10 mg/kg), no concentrations of PPL metals were reported in surface soil above the MDE Cleanup Standards for Non-Residential Soil. The current applicable MDE Cleanup Standard for arsenic is 3.6 mg/kg.

Priority pollutant metals occur widely in the earth's crust as natural minerals and are therefore, commonly identified in soil. The MDE has compiled data regarding anticipated concentrations of various metals for soil throughout the state, which are referenced as the Anticipated Typical Concentrations (ATC)/Reference Levels of Metals in the State of Maryland. A listing of these concentrations as compared to the concentrations identified at the Site is illustrated in Table 1. As shown, the concentrations of arsenic are comparable to the ATC for metals in the Site area. As such, the occurrence of these metals in the above referenced soil borings are likely attributable to background conditions within the soil matrix and not representative of a release.

4.2.4 PCBs, Pesticides and Herbicides

One select surface sample (SB-5 0-1) was submitted for fixed laboratory analysis of PCBs, pesticides, and herbicides. No detectable concentrations of PCB congeners, pesticides or herbicides were reported.

4.2.5 Total Petroleum Hydrocarbons – Diesel Range Organics / Gasoline Range Organics

Two select soil samples (SB-6 15 and SB-7 14) were submitted for fixed laboratory analysis of TPH DRO/GRO. No detectable concentrations of TPH DRO/GRO were reported.

4.3 Groundwater Analytical Results

Grab groundwater samples were collected from soil borings SB-1 and SB-5 and submitted for laboratory analysis of VOCs. A summary of the laboratory analytical results are presented on Table 2. A copy of the fixed laboratory analytical report is provided in Appendix C.

In summary, no detectable concentrations of VOCs were reported in groundwater collected from temporary wellpoint TW-1 (installed in soil boring SB-1).

Concentrations of methyl-tert-butyl ether (MTBE) and tert-Amyl methyl ether (TAME) were reported in groundwater collected from temporary groundwater monitoring well TW-5. The

concentrations were 15 ug/l and 2 ug/l, respectively. MTBE and TAME are common gasoline additives. To further evaluate the above VOC concentrations, groundwater sample results were compared to the current applicable MDE Cleanup Standards for Groundwater. As shown on Table 2, the concentrations of the petroleum-related VOCs reported in groundwater sample TW-5 are below the current applicable MDE Cleanup Standards for Groundwater.

5.0 CONCLUSIONS

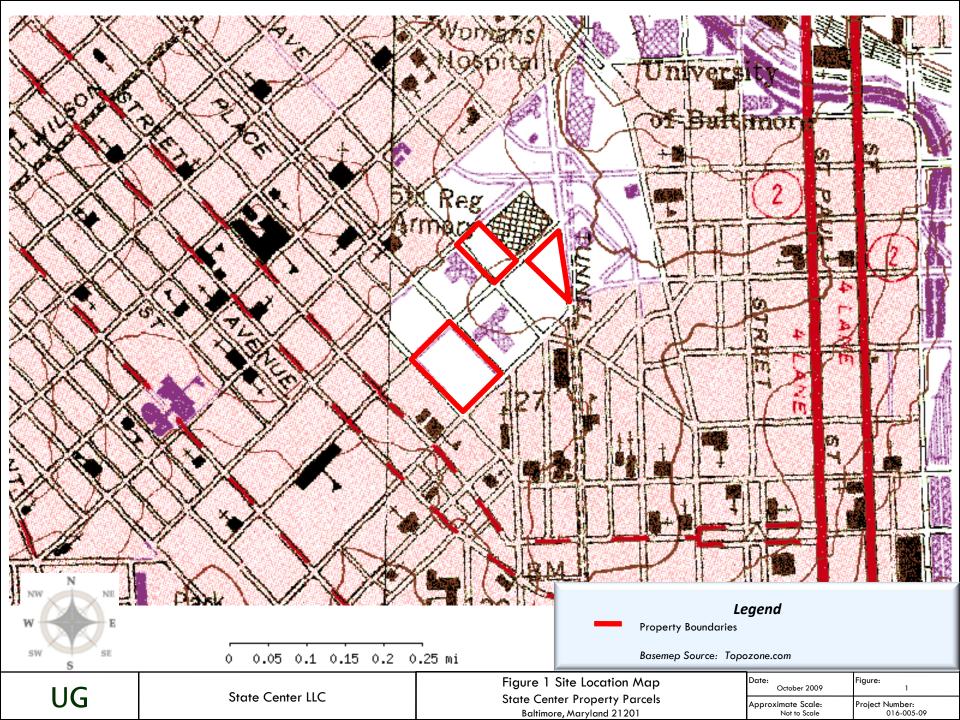
State Center LLC contracted Urban Green to perform a Limited Phase II ESA of the State Center Property, Parcels G, C, and I2 located on North Eutaw Street and West Preston Street in Baltimore, Maryland. The objective of this investigation was to provide an evaluation of RECs as identified in the *Phase I Environmental Site Assessment* (ERM 2007), and provide initial site characterization information to support a future application of the Site into the Maryland Voluntary Cleanup Program.

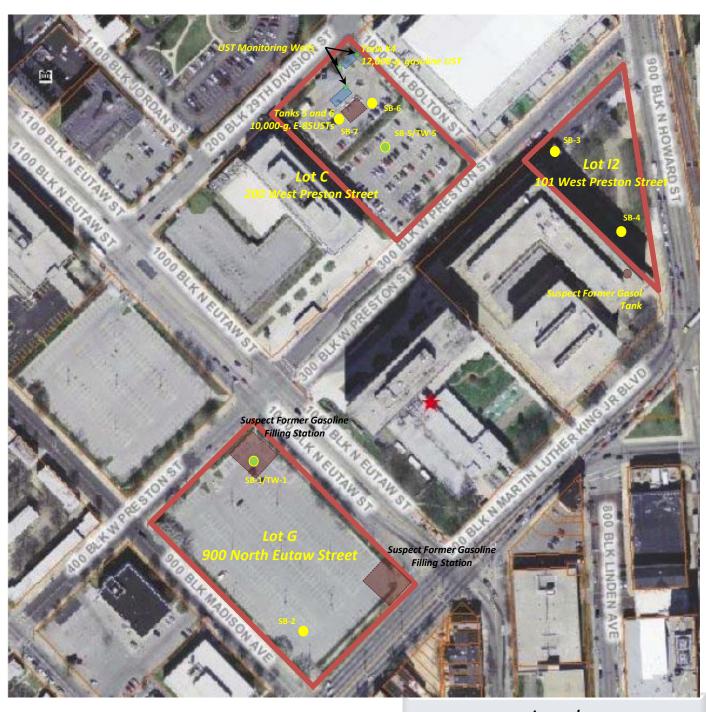
The scope of this investigation consisted of advancing seven soil borings (SB-1 through SB-7) at the Site. Two soil borings (SB-1 and SB-5) were completed as temporary groundwater monitoring wells. In general, soil boring locations were biased towards areas of concerns, including the current and historic use, and current and historic USTs. Select soil samples were collected from each soil boring and submitted for fixed laboratory analysis of VOCs, PAHs, PPL Metals, PCBs, pesticides, herbicides, and/or TPH DRO/GRO; grab groundwater samples were submitted for fixed laboratory analysis of VOCs.

5.1 Soil

With the exception of arsenic and select PAHs, no analytes were reported at concentrations in excess the currently applicable MDE Cleanup Standards for Non-Residential soil. Specifically,

- Arsenic was reported above the current applicable state cleanup standard (3.6 mg/kg) in subsurface and/or surface soil samples collected from soil borings SB-1, SB-2, SB-3, SB-4, and SB-5 at concentrations ranging from 0.63 mg/kg to 10 mg/kg. No detectable concentrations of arsenic were reported in subsurface soil collected from soil boring SB-2.
- Benzo(a)pyrene was reported above the current applicable state cleanup standards in one soil sample (SB-3 0-1) at a concentration of 800 ug/kg.


Priority pollutant metals occur widely in the earth's crust as natural minerals and are therefore, commonly identified in soil. The MDE has compiled data regarding anticipated concentrations of various metals for soil throughout the state, which are referenced as the ATC/Reference Levels of Metals in the State of Maryland. The concentrations of arsenic are comparable to the ATC for metals in the Site area. As such, the occurrence of these metals in the above referenced soil borings are likely attributable to background conditions and not representative of a release.


5.2 Groundwater

No concentrations of VOCs were reported in groundwater samples collected from temporary wells TW-1 and TW-5 above the current applicable MDE Cleanup Standards for Groundwater.

6.0 REFERENCES

- Environmental Resources Management, Inc. (ERM). 2007. *Phase I Environmental Site Assessment State Center, Baltimore, Maryland*. March.
- Maryland Department of the Environment (MDE). 2006. *Voluntary Cleanup Program Guidance Document.* March.
- MDE. 2008. State of Maryland Department of the Environment Cleanup Standards for Soil and Groundwater, Interim Final Guidance (Update No. 2.1). August.

UG

Legend Property Boundaries UST Locations Suspect Former UST Locations Soil Boring Location Soil Boring/Temp Groundwater Well Location UST Monitoring Well

State Center LLC Baltimore, Maryland Figure 2 Soil and Groundwater
Sampling Locations
State Center Property Parcels
Baltimore, Maryland 21201

Date: October 2009

Figure:

Approximate Scale: Project Number: 016-005-09

Table 1 Summary of Soil Analytical Results Limited Phase II Environmental Site Assessment State Center Property -Parcels G, C, and I2, Baltimore, Maryland 21201

ANALYTE	MDE Cleanup	MDE Cleanup			Par	cel G			Parc	cel I2			Parc	el C	
	Standard - Residential ⁽¹⁾	Standard - Non Residential ⁽¹⁾	ATC (2)	SB-1 0-1	SB-1 4-5	SB-2 0-1	SB-2 19-20	SB-3 0-1	SB-3 4-5	SB-4 0-1	SB-4 4-5	SB-5 0-1	SB-5 4-5	SB-6 15	SB-7 14
Pesticides (SW8081A / ug/kg)	NA	NA	NA	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	ND	Not analyzed	Not analyzed	Not analyzed
Herbicides (SW8151A / ug/kg)	NA	NA	NA	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	ND	Not analyzed	Not analyzed	Not analyzed
PCBs (SW8082 / mg/kg)	NA	NA	NA	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	ND	Not analyzed	Not analyzed	Not analyzed
Priority Pollutant Metals (SW6020 / n	ng/kg)				•			·		•	•		•	Not analyzed	Not analyzed
Antimony	3.1	41	6	< 2.5	< 2.6	< 1.9	< 2	< 1.8	< 1.7	< 2.6	< 2.3	< 1.8	< 2.1		
Arsenic	0.43	1.9	3.6	1.7	0.63	1.1	< 0.4	2.2	2.5	2.6	1.3	10.0	4.0		
Beryllium	16	200	0.66	< 2.5	< 2.6	< 1.9	< 2	< 1.8	< 1.7	< 2.6	< 2.3	< 1.8	< 2.1		
Cadmium	3.9	51	0.73	< 2.5	< 2.6	< 1.9	< 2	< 1.8	< 1.7	< 2.6	< 2.3	< 1.8	< 2.1		
Chromium	23	310	28	25	3.1	21	< 2	15	14	43	29	23	24		
Copper	310	4,100	12	31	< 2.6	12	< 2	8.6	3.5	30	28	6.6	7		
Lead	400	1000	45	21	< 2.6	2.6	< 2	53	23	16	7.4	13	5.5		
Mercury			0.51	< 0.099	< 0.1	< 0.076	< 0.081	0.078	< 0.07	< 0.11	< 0.093	< 0.074	< 0.084		
Nickel	160	2,000	13	7.9	< 2.6	7.8	< 2	6.7	5.8	35	32	< 1.8	2.7		
Selenium	39	510	2.2	< 2.5	< 2.6	< 1.9	< 2	< 1.8	< 1.7	< 2.6	< 2.3	< 1.8	< 2.1		
Silver	39	510	0.94	< 2.5	< 2.6	< 1.9	< 2	< 1.8	< 1.7	< 2.6	< 2.3	< 1.8	< 2.1		
Thallium	0.55	7.2	3.9	< 2	< 2	< 1.5	< 1.6	< 1.5	< 1.4	< 2.1	< 2.3	< 1.5	< 1.7		
Zinc	2,300	31,000	63	38	31	42	< 2	33	17	76	74	9.3	6.7		
Polycyclic Aromatic Hydrocarbons (SV	/8270C / ua/ka)													Not analyzed	Not analyzed
Acenaphthene	470,000	6,100,000	NA	6	< 5	< 5	< 5	14	< 5	< 6	< 5	< 6	< 6	Not unaryzeu	Not unalyzeu
Acenaphthylene	470,000	6,100,000	NA NA	< 5	< 5	< 5	< 5	340	< 5	< 6	< 5	< 6	< 6		
Anthracene	2,300,000	31,000,000	NA	< 5	< 5	32	< 5	120	< 5	< 6	< 5	< 6	< 6		
Benzo(a)anthracene	220	3,900	NA	9	< 5	17	< 5	330	< 5	13	8	< 6	< 6		
Benzo(a)pyrene	22	390	NA	8	< 5	20	< 5	800	< 5	12	6	< 6	< 6		
Benzo(b)fluoranthene	220	3,900	NA	16	< 5	42	< 5	820	< 5	16	10	< 6	< 6		
Benzo(g,h,i)perylene	230,000	3,100,000	NA	7	< 5	15	<5	250	< 5	< 6	< 5	< 6	< 6		
Benzo(k)fluoranthene	2,200	39,000	NA	< 5	< 5	< 5	< 5	260	< 5	7	5	< 6	< 6		
Chrysene	22,000	390,000	NA	< 5	< 5	21	< 5	380	< 5	13	8	< 6	< 6		
Dibenz(a,h)anthracene	22	390	NA	< 5	< 5	9	< 5	60	< 5	< 6	< 5	< 6	< 6		
Fluoranthene	310,000	4,100,000	NA	12	< 5	23	< 5	320	< 5	21	13	< 6	< 6		
Fluorene	310,000	4,100,000	NA	9	< 5	< 5	< 5	6	< 5	< 6	< 5	< 6	< 6		
Indeno(1,2,3-c,d)Pyrene	220	3,900	NA	6	< 5	10	< 5	230	< 5	6	< 5	< 6	< 6		
2-Methylnaphthalene	31,000	410,000	NA	9	< 5	5	< 5	51	13	< 6	5	< 6	< 6		
Naphthalene	160,000	4,100,000	NA	< 5	< 5	< 5	< 5	75	14	< 6	< 5	< 6	< 6		
Phenanthrene	2,300,000	31,000,000	NA	45	< 5	27	< 5	130	< 5	12	13	< 6	< 6		
Pyrene	230,000	3,100,000	NA	26	< 5	61	< 5	840	< 5	28	16	< 6	< 6		
Volatile Organic Compounds (SW8260	·	-,,		Not analyzed	ND	Not analyzed	ND	Not analyzed	ND	Not analyzed	ND	Not analyzed	ND	Not analyzed	Not analyzed
Total Petroleum Hydrocarbons (SW80	. 5. 5,			Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	Not analyzed	. Tot analyzed	. Tot analyzed
Gasoline Range Organics	230	620	NA	.voi unaiyzeu	. Fot unaryzed	. Tot analyzed	. FOR UNUITYZEU	. vot unavyzeu	.vot analyzea	. Tot analyzed	.vot unaryzeu	. For unaryzed	. vot ununyzeu	< 0.21	< 0.21
Diesel Range Organics	230	620	NA NA											< 11	< 11

Notes / Superscripts

Only detected analytes are shown

Not Analyzed - sample not analyzed for select parameters.

⁽¹⁾ State of Maryland Department of the Environment Cleanup Standards for Soil and Groundwater, Interim Final Guidance, Update No. 2.1 (MDE 2008).

⁽²⁾ Anticipated Typical Concentrations (ATCs) represent reference or background levels published by the MDE for the Site area.

ND - Analyte(s) not detected in sample.

Table 2 Summary of Groundwater Analytical Results Limited Phase II Environmental Site Assessment State Center Property - Parcels G, C, and I2, Baltimore, Maryland 21201

ANALYTE	MDE Cleanup Standard - Groundwater ⁽¹⁾	PARCEL G TW-1	PARCEL C TW-5
Volatile Organic Compounds (SW8260B / ug/l)			
tert-Amyl methyl ether (TAME)		ND	2
Methyl T-butyl Ether (MTBE)	20	ND	15

Notes / Superscripts

Only detected analytes are shown.

(1) State of Maryland Department of the Environment Cleanup Standards for Soil and Groundwater, Interim Final Guidance, Update No. 2.1 (MDE 2008).

ND - Analyte not detected in sample

APPENDIX A

SITE PHOTOGRAPHS

Photo 1. Parcel G

Photo 2. Soil Boring SB-1

Photo 3. Soil Boring SB-2

Photo 4. Parcel C (note fueling station on upper lot in background)

Photo 5. Soil Boring SB-6

Photo 6. Soil Boring SB-7

APPENDIX A - SITE PHOTOGRAPHS
Limited Phase II Environmental Site Assessment Report
State Center Property – Parcels G, C, and I2
Baltimore, Maryland

Dhata 7 Cail Baring CB F

Photo 8. Parcel 12

Photo 9. Soil Boring SB-3

Photo 10. Soil Boring SB-4

APPENDIX B

SOIL BORING LOGS

SOIL BOR	L BORING LOG			HOLE NUMBER SB-1								
1. COMPA	ANY NAME	DONNATATAL	2. DRILL SUB		TOR			- -	SHEET SHEETS			
PROJEC			GREEN SERV	ICES INC.					1 of 7			
	6-005-09 State Ce OF DRILLER	enter, Limited Phase II Environmental Site Assessment		8. MANUI	ACTURER	'S DESIGNATION OF DRILL						
Do		ILLING AND SAMPLING EQUIPMENT			OPROBE 5	1410 TION AND CONDITIONS						
2"	X 4' MACROCORE			10. SURF	CE ELEVA							
TYPE OF L HD	INER USED, IF API PE	PLICABLE				ASP	HALT					
11. DIREC	T READING PARA	METERS:		12. DATE	0007							
14. OVER	OCs (PID) BURDEN THICKNE	SSS		10/3/2009 0740 10/3/2009 0837 15. DEPTH GROUNDWATER ENCOUNTERED								
	32 ft bg H DRILLED INTO R	OCK		31.5 ft bg 17. DEPTH TO WATER AND ELAPSED TIME ATFER DRILLING COMPLETED								
NA	1			NA			G COIVIT LE	ILD				
	L DEPTH OF HOLE ft bg			19. OTHEI NA		LEVEL MEASUREMENTS (SPECIFY)						
20. WELL	. INSTALLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM		SAMPLE T	YPE:							
NC 21. SAMP		NA DESIGNATION FOR LAB ANALYSIS SAMPLE II	TERVAL AND	Gra DESIGNAT		FIELD SCREENING ANALYSIS			SCREENING ANALYSIS			
	CD	101/501/501/15/70/1	FIEL	D CCDEEN	INC FOR	VOCCUCING A DID AT 2 FT INTEDV	A.I.C		VOC-			
22. DISPO		i-1 0-1 / SB-1 4-5 / TW-1 IF NOT A WELL, BACKFILLED WITH:	FIEL	D SCREEN	ING FOR	VOCS USING A PID AT 2 FT INTERV. 23. GEOLOGIST	ALS		VOCs			
OF HOLE		SOIL CUTTING		DIRECT F	FADING	D. SULLIVAN	DEDTIL	2500115011				
USCS	DEPTH	DESCRIPTION OF MATERIALS		DIRECT F		ANALYTICAL SAMPLE DESIGN.	DEPTH (FT)	RECOVERY (%)	REMARKS			
	(FT)	(c)		VOC (nnm)	RAD (uR/hr)	(0)	(f)	(a)				
(a)	(b) 0 - 0.5	(c) Asphalt Cover		(ppm) 0.0	(uk/III)	(e)	(1)	(g)				
		FILL; medium to fine SAND, some gravel, light brown.		0.0		SB-1 0-1 collected at 0830 for PPL		75%	No visual staining or chemical			
				0.0		Metals and PAHs.		7370	odor.			
	2.5 - 6.5	Fine sandy SILT, some gravel, red.										
				0.0		SB-1 4-5 collected at 0835 for PPL Metals, PAHs, and VOCs.			No visual staining or chemical			
	6.5 - 8	Fine sandy SILT, some clay, brown.		0.0		Wictais, 1 Aris, and vocs.		75%	odor.			
		, , ,										
	8 - 10	Medium to coarse SAND, some gravel, light brown.		0.0								
	10 13	Fine sandy CHT little slavy reddieb brown		0.0				100%	No visual staining or chemical odor.			
	10 - 13	Fine sandy SILT, little clay, reddish brown.		0.0					04077			
				0.0								
	13 - 17	Medium to fine SAND, reddish brown.						100%	No visual staining or chemical			
				0.0					odor.			
				0.0								
	17 - 22	Loose, fine to coarse SAND, light brown.						100%	No visual staining or chemical			
				0.0				100%	odor.			
				0.0								
				0.0					No visual staining or chemical			
	22 - 23	Fine to coarse SAND, little silt, light brown.		0.0				100%	odor.			
	23 - 32	Fine to coarse SAND, light brown.										
				0.0					No visual staining or chemical			
				0.0				100%	no visuai staining or chemicai odor.			
				0.0								
				0.0				100%	No visual staining or chemical odor.			
				0.0		TW-1 collected at 0935 for VOCs.			0001.			
		End soil boring at 32 feet below grade. Wet at 31.5 feet belo	w grade.									
		Set tempoary casing for groundwater sample collection.										
DDOISO				HOLENO								
PROJECT: 016-005-0		LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT		HOLE NO.	:		SE	3-1				

COLL DODING	C10C						HOLE NUMBER	C		
SOIL BORING 1. COMPANY	Y NAME			2. DRILL SUE		TOR		SI	B-2	SHEET SHEETS
URBA 3. PROJECT	AN GREEN ENV	IRONMENTAL		GREEN SERV	ICES INC.					2 of 7
016-0		Center, Limited Phase II Environmental Site Assessm	nent							
7. NAME OF Don	DRILLER					FACTURER OPROBE !	t'S DESIGNATION OF DRILL 5410			
SIZES AND	D TYPES OF DR 4' MACROCOR	ILLING AND SAMPLING EQUIPMENT					ATION AND CONDITIONS			
TYPE OF LINI HDPE	ER USED, IF AF	PLICABLE					ASP	HALT		
	READING PARA s (PID)	METERS:			12. DATE	STARTED /3/2009	0930			
14. OVERBU	IRDEN THICKNI	ESS					0850 DWATER ENCOUNTERED	10	/3/2009	0530
> 20 t 16. DEPTH D	ft bg DRILLED INTO F	ROCK			17. DEPTI		ER AND ELAPSED TIME ATFER DRILLIN	IG COMPLI	ETED	
NA	EPTH OF HOLE				N/	4	LEVEL MEASUREMENTS (SPECIFY)			
20 ft	bg				N/	A	LEVEL INIEASONEINIENTS (SPECIFT)			
20. WELL IN NO	ISTALLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM NA			SAMPLE 1 Gr					
	INTERVAL AND		SAMPLE IN	TERVAL AND			FIELD SCREENING ANALYSIS			SCREENING ANALYSIS
		SB-2 0-1 / SB-2 19-20		FIEL	D SCREEN	IING FOR	VOCS USING A PID AT 2 FT INTERV	ALS		VOCs
22. DISPOSIT		IF NOT A WELL, BACKFILLED WITH:	•				23. GEOLOGIST			
OF HOLE		SOIL CUTTING			DIRECT I	READING	D. SULLIVAN ANALYTICAL	DEPTH	RECOVERY	
	EPTH	DESCRIPTION OF MATERIALS			VOC (c		SAMPLE DESIGN.	(FT)	(%)	REMARKS
LOG (F	(b)	(c)			(ppm)	(uR/hr)	(e)	(f)	(g)	
	- 1.5	Asphalt Cover, gravel, fill.			0.0					
1.5	.5 - 2	FILL, gravel and cobbles.			0.0		SB-2 0-1 collected at 0904 for PPL		80%	No visual staining or chemical odor.
2 -	- 3.5	Silty SAND, greyish brown.			0.0		Metals and PAHs.			ouor.
	5 - 5.0	Red, Medium to Coarse SAND, some gravel, cobble	es.		0.0					
5 -	- 8.5	Silty Fine SAND, reddish brown.							100%	No visual staining or chemical
		-			0.0					odor.
8.5	5 - 10	CLAY with little silt, light brownish/white.			0.0					
		, v							100%	No visual staining or chemical
10	0 - 15	Medium to Fine SAND, light to dark brown.			0.0					odor.
					0.0					
15	5 - 17	Fine sandy SILT.			0.0				100%	No visual staining or chemical
					0.0				100%	odor.
_					0.0					
17	7 - 20	White CLAY, stiff.			0.0		SB-2 19-20 collected at 0920 for			No visual staining or chemical
					0.0		VOCs.		100%	odor.
_										
		End soil boring at 20 feet below grade. No groundwater observed.								
		No groundwater observed.								
_	·									
		1								
		1								
		1								
		1								
		1								
			· · · · ·							
		1								
		1								
		1								
		1								
PROJECT: 016-005-09	STATE CENTER	R, LIMITED PHASE II ENVIRONMENTAL SITE ASSESSN	MENT	_	HOLE NO.	.:		SI	B-2	

cou non	INCLOC						HOLE NUMBER	c	n 2	
1. COMPA	ANY NAME			2. DRILL SUE	CONTRAC	TOR		5	B-3	SHEET SHEETS
J. PROJEC	RBAN GREEN EN	VIRONMENTAL		GREEN SERV	ICES INC.			l		3 of 7
01	6-005-09 State	Center, Limited Phase II Environmental Site Assessm	nent							
7. NAME Do	OF DRILLER on					OPROBE 5	'S DESIGNATION OF DRILL 5410			
	AND TYPES OF D	RILLING AND SAMPLING EQUIPMENT			10. SURFA	ACE ELEVA	TION AND CONDITIONS			
TYPE OF I	INER USED, IF A						Cor	ncrete		
	T READING PAR DCs (PID)	AMETERS:			12. DATE STARTED 13. DATE COMPLETED 10/3/2009 1240 10/3/2009					1320
14. OVER	BURDEN THICKN	ESS					1240 DWATER ENCOUNTERED	10	73/2009	1320
> : 16. DEPTI	L6 ft bg H DRILLED INTO	ROCK			17. DEPTH		ER AND ELAPSED TIME ATFER DRILLIN	IG COMPL	ETED	
N/	L DEPTH OF HOL	-			NA 10. OTUE		LEVEL MEASUREMENTS (SPECIFY)			
16	ft bg				N/	١.	LEVEL IVIEASOREWENTS (SPECIFT)			
20. WELL NO	. INSTALLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM NA			SAMPLE T Gr					
21. SAMP	LE INTERVAL AN	D DESIGNATION FOR LAB ANALYSIS	SAMPLE IN	TERVAL AND	DESIGNAT	ION FOR F	FIELD SCREENING ANALYSIS			SCREENING ANALYSIS
		SB-3 0-1 / SB-3 4-5		FIEL	D SCREEN	ING FOR	VOCS USING A PID AT 2 FT INTERV	'ALS		VOCs
22. DISPO	SITION	IF NOT A WELL, BACKFILLED WITH: SOIL CUTTING					23. GEOLOGIST D. SULLIVAN			
OF HOLE					DIRECT F	READING	ANALYTICAL ANALYTICAL	DEPTH	RECOVERY	
	DEPTH (FT)	DESCRIPTION OF MATERIALS			VOC (c	RAD	SAMPLE DESIGN.	(FT)	(%)	REMARKS
(a)	(b)	(c)			(ppm)	(uR/hr)	(e)	(f)	(g)	
	0 - 0.5	Concrete			0.0					No. 10. of state to the control
	0.5 - 2.5	Fill Refusal at 2.5 feet.			0.0				25%	No visual staining or chemical odor.
	Offset #1	Offset 5 feet west.			0.0		SB-3 0-1 collected at 1251 for PPL			
	0 - 0.5	Concrete			0.0		Metals and PAHs.		25%	No visual staining or chemical
					0.0				25%	odor.
	0.5 - 4 4 - 6	Fill, gravel, Course SAND, red. Fine sandy SILT.			0.0					
		The sandy Sizt.			0.0		SB-3 4-5 collected at 1300 for PPL		90%	No visual staining or chemical
	6 - 10	Medium to Fine SAND, brown.			0.0		Metals and PAHs.		30%	odor.
					0.0					
	10 - 11	Medium to fine SAND and gravel, brown.			0.0				100%	No visual staining or chemical odor.
	11 - 12	Medium to coarse SAND; silt seam at 12 ft bg., bro	own.		0.0					
	12 - 16	Medium to Course SAND, gravel.			0.0					
		-			0.0				100%	No visual staining or chemical odor.
					0.0					
		Refusal at 16 feet below grade. No groundwater o	bserved.							
		-								
		-								
		<u> </u>								
		-								
		<u> </u>								
		-								
		<u>1</u>								
		-								
		1								
PROJECT:					HOLE NO.	<u> </u>				
		R, LIMITED PHASE II ENVIRONMENTAL SITE ASSESSI	MENT		HOLE NO.			SI	B-3	

cou non	INCLOC						HOLE NUMBER		D 4	
1. COMPA	ANY NAME			2. DRILL SUE	CONTRAC	TOR		5	B-4	SHEET SHEETS
J. PROJEC	RBAN GREEN ENV	IRONMENTAL		GREEN SERV	ICES INC.					4 of 7
01	.6-005-09 State C	enter, Limited Phase II Environmental Site Assessm	nent							
7. NAME	OF DRILLER on					FACTURER OPROBE !	'S DESIGNATION OF DRILL 5410			
9. SIZES A		ILLING AND SAMPLING EQUIPMENT					TION AND CONDITIONS			
TYPE OF L	INER USED, IF AP	PLICABLE						ncrete		
	T READING PARA DCs (PID)	METERS:			12. DATE	STARTED /3/2009	COMPLETED /3/2009	1400		
14. OVER	BURDEN THICKNE	SS					1325 DWATER ENCOUNTERED	10	7372003	1400
	20 ft bg H DRILLED INTO R	ОСК			17. DEPTI		ER AND ELAPSED TIME ATFER DRILLII	NG COMPL	ETED	
NA 18. TOTAL	A L DEPTH OF HOLE				19. OTHE		LEVEL MEASUREMENTS (SPECIFY)			
20	ft bg . INSTALLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM		ı	NA SAMPLE 1	A				T
NO)	NA			Gr	ab				
21. SAMP	LE INTERVAL AND	DESIGNATION FOR LAB ANALYSIS	SAMPLE IN	TERVAL AND	DESIGNAT	ION FOR I	FIELD SCREENING ANALYSIS			SCREENING ANALYSIS
		SB-4 0-1 / SB-4 4-5		FIEL	D SCREEN	IING FOR	VOCS USING A PID AT 2 FT INTERV	/ALS		VOCs
22. DISPO	SITION	IF NOT A WELL, BACKFILLED WITH: SOIL CUTTING					23. GEOLOGIST D. SULLIVAN			
	DERTH	DESCRIPTION OF MATERIALS			DIRECT I	READING	ANALYTICAL	DEPTH (ET)	RECOVERY	REMARKS
LOG	DEPTH (FT)				voc	RAD	SAMPLE DESIGN.	(FT)	(%)	KEIVIAKKS
(a)	(b) 0 - 0.5	(c) Concrete Cover.			(ppm) 0.0	(uR/hr)	(e)	(f)	(g)	
	0.5 - 1	FILL; Gravel and SAND.			0.0		SB-4 0-1 collected at 1335 for PPL		100%	No visual staining or chemical
	1 - 20	FILL; medium to fine SAND, some gravel, silica. Br	rown to grey	y.	0.0		Metals and PAHs.		100%	odor.
					0.0		SB-4 4-5 collected at 1340 for VOCs,			
							PPL Metals and PAHs.		100%	No visual staining or chemical
					0.0					odor.
					0.0					
									100%	No visual staining or chemical odor.
					0.0					ouo
					0.0				100%	No visual staining or chemical odor.
	-				0.0					
					0.0					No visual staining or chemical
					0.0				100%	odor.
					0.0					
		End boring at 20 feet below grade. No groundwater observed.								
		no granamater observed.								
PROJECT:				-	חטוב איס					
		R, LIMITED PHASE II ENVIRONMENTAL SITE ASSESSM	MENT		HOLE NO.			SI	B-4	

COLL PORING LOC						HOLE NUMBER	C	D. F.	
SOIL BORING LOG 1. COMPANY NAME			DRILL SUB		TOR		SI	B-5	SHEET SHEETS
URBAN GREEN ENVIRONMENTAL 3. PROJECT		GF	REEN SERV	ICES INC.					5 of 7
016-005-09 State Center, Limited	Phase II Environmental Site Assessme	ent							
7. NAME OF DRILLER Don					OPROBE 5	'S DESIGNATION OF DRILL 5410			
9. SIZES AND TYPES OF DRILLING AND SA	AMPLING EQUIPMENT					TION AND CONDITIONS			
2" X 4' MACROCORE TYPE OF LINER USED, IF APPLICABLE HDPE						ASP	HALT		
11. DIRECT READING PARAMETERS: VOCs (PID)				12. DATE	STARTED /3/2009	1110		COMPLETED /3/2009	1230
14. OVERBURDEN THICKNESS				15. DEPTH	GROUNE	DWATER ENCOUNTERED	10	7372003	1230
> 27 ft bg 16. DEPTH DRILLED INTO ROCK				24 17. DEPTH	ft bg	ER AND ELAPSED TIME ATFER DRILLIN	IG COMPLI	ETED	
NA 18. TOTAL DEPTH OF HOLE				NA 10. OTUE		LEVEL MEASUREMENTS (SPECIFY)			
27 ft bg				NA	1	LEVEL INIEASUREINIENTS (SPECIFY)			
20. WELL INSTALLED? IF SO COMPLI	ETE CONSTRUCTION DIAGRAM			SAMPLE T Gr					
21. SAMPLE INTERVAL AND DESIGNATION	N FOR LAB ANALYSIS	SAMPLE INTER	RVAL AND			FIELD SCREENING ANALYSIS			SCREENING ANALYSIS
SB-5 0-1 / SB-5	4-5 / TW-5		FIELI	D SCREEN	ING FOR	VOCS USING A PID AT 2 FT INTERV	ALS		VOCs
22. DISPOSITION IF NO	T A WELL, BACKFILLED WITH:					23. GEOLOGIST			
OF HOLE SOIL C	UTTING			DIRECT F	READING	D. SULLIVAN ANALYTICAL	DEPTH	RECOVERY	
USCS DEPTH	DESCRIPTION OF MATERIALS			(c	i)	SAMPLE DESIGN.	(FT)	(%)	REMARKS
LOG (FT) (a) (b)	(c)			VOC (ppm)	RAD (uR/hr)	(e)	(f)	(g)	
	r, gravel and subbase.			0.0					
						SB-5 0-1 collected at 1130 for PPL		60%	No visual staining or chemical
2 - 6 Brown, tight,	fine SAND. Some SILT.			0.0		Metals and PAHs.			odor.
2 - 0 Brown, tight,	Tille SAND. Some SILT.			0.0		SB-5 4-5 collected at 1135 for			
6 - 7 Gravel, angul	ar, reddish brown, grey.					VOCs, PPL Metals, and PAHs.		60%	No visual staining or chemical
				0.0				00%	odor.
	ne SAND, little SILT, medium brown. edium brown.			0.0					
	ense white/light brown			0.0				4000/	No visual staining or chemical
	below grade; offset 10 feet north.			0.0				100%	odor.
11 - 27 Fine SAND, de	ense, white/light brown.								
				0.0					No visual staining or chemical
				0.0				100%	odor.
<u> </u>				0.0					No vicual staining or chamical
<u> </u>				0.0				100%	No visual staining or chemical odor.
				0.0					
				0.0					
				0.0				100%	No visual staining or chemical odor.
Wet at 24 fee	et below grade.			0.0					54077
	V								
				0.03				100%	No visual staining or chemical
				0.00		TW F collected at 1310 for VOCs			odor.
End boring at	27 feet below grade. Wet at 24 feet be	elow grade.				TW-5 collected at 1210 for VOCs.			
Set temporary	y casing for groundwater sample collec	ction.							
DDOIECT.				HOLENC					
PROJECT: 016-005-09 STATE CENTER, LIMITED PHA	ASE II ENVIRONMENTAL SITE ASSESSMI	ENT		HOLE NO.	:		SI	3-5	

COLL PODING LOC				HOLE NUMBER	c	D.C.				
SOIL BORING LOG 1. COMPANY NAME	2. DRILL SUE		TOR			B-6	SHEET SHEETS			
URBAN GREEN ENVIRONMENTAL 3. PROJECT	GREEN SERV	/ICES INC.					6 of 7			
016-005-09 State Center, Limited Phase II Environmental Site Assessment 7. NAME OF DRILLER		O NAANUU	FACTURER	'S DESIGNATION OF DRILL						
Don		GE	OPROBE 5	5410						
SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT X 4' MACROCORE		10. SURF	ACE ELEVA	TION AND CONDITIONS						
TYPE OF LINER USED, IF APPLICABLE				ASI	PHALT					
HDPE 11. DIRECT READING PARAMETERS:		12. DATE				COMPLETED				
VOCs (PID) 14. OVERBURDEN THICKNESS		10/3/2009 0940 10/3/2009 1015 15. DEPTH GROUNDWATER ENCOUNTERED								
> 20 ft bg		N/	A		10.001401	FTFD				
16. DEPTH DRILLED INTO ROCK NA		N/	A	ER AND ELAPSED TIME ATFER DRILLIN	NG COMPL	ETED				
18. TOTAL DEPTH OF HOLE 20 ft bg		19. OTHE		LEVEL MEASUREMENTS (SPECIFY)						
20. WELL INSTALLED? IF SO COMPLETE CONSTRUCTION DIAGRAM NO NA		SAMPLE 1 Gr	YPE:							
	INTERVAL AND			FIELD SCREENING ANALYSIS			SCREENING ANALYSIS			
SB-6 15' TPH DRO/GRO	FIFL	.D SCREEN	IING FOR	VOCs						
22. DISPOSITION IF NOT A WELL, BACKFILLED WITH:				. 303						
OF HOLE SOIL CUTTING		DIRECT I	READING	D. SULLIVAN ANALYTICAL	DEPTH	RECOVERY				
USCS DEPTH DESCRIPTION OF MATERIALS LOG (FT)		VOC (c		SAMPLE DESIGN.	(FT)	(%)	REMARKS			
(a) (b) (c)		(ppm)	(uR/hr)	(e)	(f)	(g)				
0 - 1 Asphalt, gravel and sand (subbase).		0.0								
1 - 2 Medium to Coarse SAND and gravel (some), reddish brown 2 - 8 Silty CLAY / Clayey SILT, reddish brown	i.	0.0				100%	No visual staining or chemical odor.			
Sity CEAT / Clayey Siet, redulan brown		0.0								
		0.0								
		0.0				100%	No visual staining or chemical odor.			
		0.0								
8 - 11 Clayey SILT, some fine to medium SAND and gravel, reddis	h brown.	0.0					No. 10. 1 at 15. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			
		0.0				100%	No visual staining or chemical odor.			
11 - 14 Silty CLAY reddish brown.										
		0.0					No visual staining or chemical			
14 - 15.5 Medium to fine SAND, white.		0.0		SB-6 15 collected at 1023 for TPH DRO/GRO.		100%	odor.			
15.5 - 18 Fine Sandy SILT, some Clay, white. 18 - 19 Medium to fine SAND, light brown.		0.0					No visual staining or chemical			
19 - 19.5 Silty Clay, reddish brown.		0.0				100%	odor.			
19.5 - 20 Medium to fine SAND, light brown.										
End boring at 20 feet below grade. No groundwater observ										
 evidence of petroleum impact noted. Soil sample collected below grade just above clay layer. 	at 15 feet									
3,										
<u></u>										
PROJECT: 016-005-09 STATE CENTER LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT		HOLE NO	:		S	B-6				

cou nonue	100						HOLE NUMBER				
SOIL BORING 1. COMPANY I	NAME			2. DRILL SUB		TOR		SI	B-7	SHEET SHEETS	
URBAN 3. PROJECT	N GREEN ENVI	RONMENTAL		GREEN SERV	ICES INC.					7 of 7	
016-00		enter, Limited Phase II Environmental Site Assessm	nent								
7. NAME OF D Don	DRILLER					FACTURER FOPROBE 5	'S DESIGNATION OF DRILL 5410				
9. SIZES AND	TYPES OF DRI	LLING AND SAMPLING EQUIPMENT					TION AND CONDITIONS				
TYPE OF LINER HDPE	R USED, IF APP	PLICABLE					ASF	HALT	COMPLETED		
 DIRECT RE VOCs (EADING PARAN	METERS:			12. DATE	STARTED /3/2009	1045				
14. OVERBURI	DEN THICKNES	ss					1020 DWATER ENCOUNTERED	10	/3/2009	1045	
> 15.5 16. DEPTH DRI NA	ft bg RILLED INTO RO	OCK			17. DEPTH	TO WAT	ER AND ELAPSED TIME ATFER DRILLIN	IG COMPLI	ETED		
18. TOTAL DEF	PTH OF HOLE				19. OTHE	R WATER I	LEVEL MEASUREMENTS (SPECIFY)				
15.5 ft 20. WELL INST NO	STALLED?	IF SO COMPLETE CONSTRUCTION DIAGRAM NA			SAMPLE T Gr	YPE:					
		DESIGNATION FOR LAB ANALYSIS	SAMPLE IN	TERVAL AND			FIELD SCREENING ANALYSIS			SCREENING ANALYSIS	
		SB-7 14		FIEL	D SCREEN	IING FOR	VOCS USING A PID AT 2 FT INTERV	ALS		VOCs	
22. DISPOSITIO	ION	IF NOT A WELL, BACKFILLED WITH:	•				23. GEOLOGIST				
OF HOLE		SOIL CUTTING			DIRECT F	READING	D. SULLIVAN ANALYTICAL	DEPTH	RECOVERY		
USCS DEP		DESCRIPTION OF MATERIALS			VOC (c		SAMPLE DESIGN.	(FT)	(%)	REMARKS	
LOG (FT) (a) (b		(c)			(ppm)	(uR/hr)	(e)	(f)	(g)		
0 - 2	2	Asphalt Cover (2") + gravel + Subbase			0.0						
2 - 8	8	FILL; gravelly fine to coarse SAND, some silt, brow	n to reddish	n brown.	0.0				50%	No visual staining or chemical odor.	
					0.0						
	-				0.0				50%	No visual staining or chemical odor.	
8 - 1	12	No second			0.0						
8-1		No recovery.			0.0				0%	No visual staining or chemical	
					0.0				070	odor.	
		Clayey SILT to silty CLAY, some fine SAND and grav	vel, reddish	brown.	0.0						
		Medium to course SAND, some SILT and gravel, re Cobbles, SAND.	ddish brow	n.	0.0		SB-7 14 collected at 1050 for TPH DRO/GRO.		100%	No visual staining or chemical odor.	
		Fine to medium SAND, whitish red.									
		Refusal at 15.5 feet below grade. No groundwate	r observed.								
	_										
	-										
PROJECT:					HOLE NO.	L .:			L		
	STATE CENTER,	, LIMITED PHASE II ENVIRONMENTAL SITE ASSESSI	MENT					SI	3-7		

APPENDIX C

LABORATORY ANALYTICAL REPORT

Certificate of Analysis

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 8:30
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID: SB-1 0-1'		Ma	trix: Soi	Ī	La	ab ID: 09100	501-01
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	94	%		SM2540G	10/06/09	10/07/09 10:48	LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	6	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Acenaphthylene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Anthracene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Benzo[a]anthracene	9	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Benzo[a]pyrene	8	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Benzo[b]fluoranthene	16	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Benzo[g,h,i]perylene	7	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Benzo[k]fluoranthene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Chrysene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Dibenz[a,h]anthracene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Fluoranthene	12	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Fluorene	9	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Indeno[1,2,3-cd]pyrene	6	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
2-Methylnaphthalene	9	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Naphthalene`	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Phenanthrene	45	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Pyrene	26	ug/kg	5	EPA 8270C	10/06/09	10/08/09 14:57	JKL
Total Metals							
Antimony	ND	mg/kg	2.5	EPA 6020A	10/06/09	10/07/09 13:27	MEL
Arsenic	1.7	mg/kg	0.5	EPA 6020A	10/06/09	10/07/09 13:27	MEL
Beryllium	ND	mg/kg	2.5	EPA 6020A	10/06/09	10/07/09 13:27	MEL
Cadmium	ND	mg/kg	2.5	EPA 6020A	10/06/09	10/07/09 13:27	MEL
Chromium	25	mg/kg	2.5	EPA 6020A	10/06/09	10/07/09 13:27	MEL
Copper	31	mg/kg	2.5	EPA 6020A	10/06/09	10/08/09 12:59	MEL
Lead	21	mg/kg	2.5	EPA 6020A	10/06/09	10/07/09 13:27	MEL
Mercury	ND	mg/kg	0.099	EPA 6020A	10/06/09	10/07/09 13:27	MEL
Nickel	7.9	mg/kg	2.5	EPA 6020A	10/06/09	10/07/09 13:27	MEL
Selenium	ND	mg/kg	2.5	EPA 6020A	10/06/09	10/07/09 13:27	MEL
Silver	ND	mg/kg	2.5	EPA 6020A	10/06/09	10/07/09 13:27	MEL
Thallium	ND	mg/kg	2	EPA 6020A	10/06/09	10/07/09 13:27	MEL
Zinc	38	mg/kg	2.5	EPA 6020A	10/06/09	10/08/09 12:59	MEL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Certificate of Analysis

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 8:35
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID: SB-1 4-5'	Matrix: Soil				Lab ID: 09100501-02		
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	87	%		SM2540G	10/06/09	10/07/09 10:48	LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Acenaphthylene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Anthracene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Benzo[a]anthracene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Benzo[a]pyrene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Benzo[b]fluoranthene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Benzo[g,h,i]perylene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Benzo[k]fluoranthene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Chrysene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Dibenz[a,h]anthracene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Fluoranthene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Fluorene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Indeno[1,2,3-cd]pyrene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
2-Methylnaphthalene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Naphthalene`	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Phenanthrene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Pyrene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 15:36	JKL
Target Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Chloromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Vinyl chloride	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Bromomethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Chloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Trichlorofluoromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,1-Dichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Acetone	ND	ug/kg	49	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Carbon disulfide	ND	ug/kg	10	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Methyl acetate	ND	ug/kg	24	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Methylene chloride	ND	ug/kg	24	EPA 8260B	10/06/09	10/06/09 12:37	JKL
trans-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,1-Dichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
cis-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
2-Butanone (MEK)	ND	ug/kg	49	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Chloroform	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,1,1-Trichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 8:35
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Field Sample ID: SB-1 4-5'		Mat	rix: Soil		La	ab ID: 091005	01-02
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound List - VOLATILES							
Cyclohexane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Carbon tetrachloride	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Benzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,2-Dichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Trichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Methylcyclohexane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,2-Dichloropropane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Bromodichloromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
cis-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	10	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Toluene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
trans-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,1,2-Trichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Tetrachloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
2-Hexanone (MBK)	ND	ug/kg	10	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Dibromochloromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,2-Dibromoethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Chlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Ethylbenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
m&p-Xylene	ND	ug/kg	10	EPA 8260B	10/06/09	10/06/09 12:37	JKL
o-Xylene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Styrene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Bromoform	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Isopropylbenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,1,2,2-Tetrachloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,3-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,4-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,2-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,2-Dibromo-3-chloropropane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
1,2,4-Trichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Naphthalene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
tert-Butanol (TBA)	ND	ug/kg	24	EPA 8260B	10/06/09	10/06/09 12:37	JKL
Diisopropyl ether (DIPE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
tert-Amyl methyl ether (TAME)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
tert-Amyl alcohol (TAA)	ND	ug/kg	24	EPA 8260B	10/06/09	10/06/09 12:37	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 12:37	JKL
otal Metals							
Antimony	ND	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 13:45	MEL
•		3 3					

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 8:35
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID:	SB-1 4-5'		Mat	rix: Soi	l	La	b ID: 09100	501-02
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Total Metals								
Arsenic		0.63	mg/kg	0.51	EPA 6020A	10/06/09	10/07/09 13:45	MEL
Beryllium		ND	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 13:45	MEL
Cadmium		ND	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 13:45	MEL
Chromium		3.1	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 13:45	MEL
Copper		ND	mg/kg	2.6	EPA 6020A	10/06/09	10/08/09 13:12	MEL
Lead		ND	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 13:45	MEL
Mercury		ND	mg/kg	0.1	EPA 6020A	10/06/09	10/07/09 13:45	MEL
Nickel		ND	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 13:45	MEL
Selenium		ND	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 13:45	MEL
Silver		ND	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 13:45	MEL
Thallium		ND	mg/kg	2	EPA 6020A	10/06/09	10/07/09 13:45	MEL
Zinc		31	mg/kg	2.6	EPA 6020A	10/06/09	10/08/09 13:12	MEL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 9:04
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID: SB-2 0-1'		Ma	trix: Soil		La	nb ID: 09100	501-03
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	95	%		SM2540G	10/06/09	10/07/09 10:48	LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Acenaphthylene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Anthracene	32	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Benzo[a]anthracene	17	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Benzo[a]pyrene	20	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Benzo[b]fluoranthene	42	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Benzo[g,h,i]perylene	15	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Benzo[k]fluoranthene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Chrysene	21	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Dibenz[a,h]anthracene	9	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Fluoranthene	23	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Fluorene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Indeno[1,2,3-cd]pyrene	10	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
2-Methylnaphthalene	5	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Naphthalene`	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Phenanthrene	27	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Pyrene	61	ug/kg	5	EPA 8270C	10/06/09	10/08/09 16:15	JKL
Total Metals							
Antimony	ND	mg/kg	1.9	EPA 6020A	10/06/09	10/07/09 13:51	MEL
Arsenic	1.1	mg/kg	0.38	EPA 6020A	10/06/09	10/07/09 13:51	MEL
Beryllium	ND	mg/kg	1.9	EPA 6020A	10/06/09	10/07/09 13:51	MEL
Cadmium	ND	mg/kg	1.9	EPA 6020A	10/06/09	10/07/09 13:51	MEL
Chromium	21	mg/kg	1.9	EPA 6020A	10/06/09	10/07/09 13:51	MEL
Copper	12	mg/kg	1.9	EPA 6020A	10/06/09	10/08/09 13:16	MEL
Lead	2.6	mg/kg	1.9	EPA 6020A	10/06/09	10/07/09 13:51	MEL
Mercury	ND	mg/kg	0.076	EPA 6020A	10/06/09	10/07/09 13:51	MEL
Nickel	7.8	mg/kg	1.9	EPA 6020A	10/06/09	10/07/09 13:51	MEL
Selenium	ND	mg/kg	1.9	EPA 6020A	10/06/09	10/07/09 13:51	MEL
Silver	ND	mg/kg	1.9	EPA 6020A	10/06/09	10/07/09 13:51	MEL
Thallium	ND	mg/kg	1.5	EPA 6020A	10/06/09	10/07/09 13:51	MEL
Zinc	42	mg/kg	1.9	EPA 6020A	10/06/09	10/08/09 13:16	MEL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 9:20
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Field Sample ID:	SB-2 19-20'		Mat	rix: Soil		Lab ID: 09100501-04			
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.	
Percent Solids									
Percent Solids		90	%		SM2540G	10/06/09	10/07/09 10:48	LMJ	
Target Compound List	- VOLATILES								
Dichlorodifluorometh	ane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Chloromethane		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Vinyl chloride		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Bromomethane		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Chloroethane		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Trichlorofluorometha	ine	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
1,1-Dichloroethene		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
1,1,2-Trichlorotrifluo	roethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Acetone		ND	ug/kg	46	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Carbon disulfide		ND	ug/kg	9	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Methyl acetate		ND	ug/kg	23	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Methylene chloride		ND	ug/kg	23	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
trans-1,2-Dichloroeth	nene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Methyl t-butyl ether (MTBE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
1,1-Dichloroethane		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
cis-1,2-Dichloroethe	ne	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
2-Butanone (MEK)		ND	ug/kg	46	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Chloroform		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
1,1,1-Trichloroethan	е	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Cyclohexane		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Carbon tetrachloride		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Benzene		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
1,2-Dichloroethane		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Trichloroethene		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Methylcyclohexane		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
1,2-Dichloropropane		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Bromodichlorometha	ne	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
cis-1,3-Dichloroprop	ene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
4-Methyl-2-pentanor	ne (MIBK)	ND	ug/kg	9	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Toluene		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
trans-1,3-Dichloropro	opene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
1,1,2-Trichloroethan	е	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Tetrachloroethene		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
2-Hexanone (MBK)		ND	ug/kg	9	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Dibromochlorometha	ane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
1,2-Dibromoethane		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	
Chlorobenzene		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL	

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 9:20
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID:	SB-2 19-20'		Mat	rix: Soil		La	ab ID: 09100	501-04
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound Lis	t - VOLATILES							
Ethylbenzene		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
m&p-Xylene		ND	ug/kg	9	EPA 8260B	10/06/09	10/06/09 13:11	JKL
o-Xylene		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
Styrene		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
Bromoform		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
Isopropylbenzene		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
1,1,2,2-Tetrachloroe	ethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
1,3-Dichlorobenzen	е	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
1,4-Dichlorobenzen	е	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
1,2-Dichlorobenzen	е	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
1,2-Dibromo-3-chlor	ropropane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
1,2,4-Trichlorobenze	ene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
Naphthalene		ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
Ethyl t-butyl ether (E	ETBE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
tert-Butanol (TBA)		ND	ug/kg	23	EPA 8260B	10/06/09	10/06/09 13:11	JKL
Diisopropyl ether (D	IPE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
tert-Amyl methyl eth	ner (TAME)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL
tert-Amyl alcohol (T.	AA)	ND	ug/kg	23	EPA 8260B	10/06/09	10/06/09 13:11	JKL
tert-Amyl ethyl ether	r (TAEE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:11	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 9:35
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID: TW-1		Mat	Lab ID: 091005				
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Farget Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Chloromethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Vinyl chloride	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Bromomethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Chloroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Trichlorofluoromethane	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:05	JKL
1,1-Dichloroethene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Acetone	ND	ug/L	10	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Carbon disulfide	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Methyl acetate	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Methylene chloride	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:05	JKL
trans-1,2-Dichloroethene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Methyl t-butyl ether (MTBE)	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
1,1-Dichloroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
cis-1,2-Dichloroethene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
2-Butanone (MEK)	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Chloroform	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
1,1,1-Trichloroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Cyclohexane	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Carbon tetrachloride	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Benzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
1,2-Dichloroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	
Trichloroethene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Methylcyclohexane	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:05	JKL
1,2-Dichloropropane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Bromodichloromethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
cis-1,3-Dichloropropene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Toluene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
trans-1,3-Dichloropropene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
1,1,2-Trichloroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Tetrachloroethene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
2-Hexanone (MBK)	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Dibromochloromethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	
1,2-Dibromoethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Chlorobenzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Ethylbenzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
m&p-Xylene	ND	ug/L	2	EPA 8260B	10/07/09	10/07/09 17:05	JKL
o-Xylene	ND	ug/L	- 1	EPA 8260B	10/07/09	10/07/09 17:05	

Page 8 of 27

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 9:35
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID: TW-1		Mat	rix: Wat	er	La	b ID: 09100	501-05
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound List - VOLATILES							
Styrene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Bromoform	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Isopropylbenzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
1,1,2,2-Tetrachloroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
1,3-Dichlorobenzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
1,4-Dichlorobenzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
1,2-Dichlorobenzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
1,2-Dibromo-3-chloropropane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
1,2,4-Trichlorobenzene	ND	ug/L	2	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Naphthalene	ND	ug/L	3	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
tert-Butanol (TBA)	ND	ug/L	25	EPA 8260B	10/07/09	10/07/09 17:05	JKL
Diisopropyl ether (DIPE)	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
tert-Amyl methyl ether (TAME)	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL
tert-Amyl alcohol (TAA)	ND	ug/L	25	EPA 8260B	10/07/09	10/07/09 17:05	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:05	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by:

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 10:23 Date Received: 10/05/09 9:00 Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID:	SB-6 15'		Mat	rix: So	il	La	b ID: 091005	501-06
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids								
Percent Solids		88	%		SM2540G	10/06/09	10/07/09 10:48	LMJ
Total Petroleum Hydro	ocarbons - (C10-C28) I	ORO						
Diesel Range Orgar	nics	ND	mg/kg	11	EPA 8015C	10/05/09	10/05/09 18:07	SAK
Total Petroleum Hydro	ocarbons - (C6-C10) G	RO						
Gasoline Range Org	ganics	ND	mg/kg	0.21	EPA 8015C	10/05/09	10/05/09 14:25	AC

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

 $\ensuremath{\mathsf{ND}}$ - $\ensuremath{\mathsf{Not}}$ Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 10:50
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID:	SB-7 14'		Mat	rix: So	I	La	b ID: 091005	501-07
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids								
Percent Solids		92	%		SM2540G	10/06/09	10/07/09 10:48	LMJ
Total Petroleum Hydro	ocarbons - (C10-C28)	DRO						
Diesel Range Orgar	ics	ND	mg/kg	11	EPA 8015C	10/05/09	10/05/09 18:44	SAK
Total Petroleum Hydro	ocarbons - (C6-C10) G	RO			_			
Gasoline Range Org	janics	ND	mg/kg	0.21	EPA 8015C	10/05/09	10/05/09 16:51	AC

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

 $\ensuremath{\mathsf{ND}}$ - $\ensuremath{\mathsf{Not}}$ Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Date Sampled: 10/03/09 11:30 Date Received: 10/05/09 9:00 Date Issued: 10/12/09

Project: State Center Site Location: Baltimore, MD

Field Sample ID:	SB-5 0-1'		Ma	Lab ID: 09100501-0				
		Result	Unit	LLQ	Method	Prepared	Analyzed	lnit.
Chlorinated Herbicide	s							
Dicamba		ND	ug/kg	22	EPA 8151A	10/07/09	10/12/09 10:42	SAK
MCPP		ND	ug/kg	2200	EPA 8151A	10/07/09	10/12/09 10:42	SAK
MCPA		ND	ug/kg	2200	EPA 8151A	10/07/09	10/12/09 10:42	SAK
Dichloroprop		ND	ug/kg	22	EPA 8151A	10/07/09	10/12/09 10:42	SAK
2,4-D		ND	ug/kg	22	EPA 8151A	10/07/09	10/12/09 10:42	SAK
2,4,5-TP (Silvex)		ND	ug/kg	22	EPA 8151A	10/07/09	10/12/09 10:42	SAK
2,4,5-T		ND	ug/kg	22	EPA 8151A	10/07/09	10/12/09 10:42	SAK
Dinoseb		ND	ug/kg	22	EPA 8151A	10/07/09	10/12/09 10:42	SAK
2,4-DB		ND	ug/kg	22	EPA 8151A	10/07/09	10/12/09 10:42	SAK
Organochlorine Pestic	cides							
Aldrin		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
a-BHC		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
b-BHC		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
g-BHC (Lindane)		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
d-BHC		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
a-Chlordane		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
g-Chlordane		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
4,4-DDD		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
4,4-DDE		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
4,4-DDT		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
Dieldrin		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
Endosulfan I		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
Endosulfan II		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
Endosulfan Sulfate		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
Endrin		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
Endrin Aldehyde		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
Endrin Ketone		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
Heptachlor		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
Heptachlor Epoxide		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
Methoxychlor		ND	ug/kg	11	EPA 8081A	10/05/09	10/06/09 12:59	SAK
Toxaphene		ND	ug/kg		EPA 8081A	10/05/09	10/06/09 12:59	
Percent Solids								
Percent Solids		89	%		SM2540G	10/06/09	10/07/09 10:48	LMJ
Polychlorinated Biphe	nyls							
Aroclor 1016		ND	mg/kg	0.056	EPA 8082	10/05/09	10/06/09 12:22	SAK
Aroclor 1221		ND	mg/kg	0.056	EPA 8082	10/05/09	10/06/09 12:22	SAK
Aroclor 1232		ND	mg/kg	0.056	EPA 8082	10/05/09	10/06/09 12:22	SAK
Aroclor 1242		ND	mg/kg	0.056	EPA 8082	10/05/09	10/06/09 12:22	
Aroclor 1248		ND	mg/kg	0.056	EPA 8082	10/05/09	10/06/09 12:22	
				12 of 27				

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 11:30
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Field Sample ID: SB-5 0-1'		Ma	trix: Soil		Lab ID: 09100501-08			
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.	
Polychlorinated Biphenyls								
Aroclor 1254	ND	mg/kg	0.056	EPA 8082	10/05/09	10/06/09 12:22	SAK	
Aroclor 1260	ND	mg/kg	0.056	EPA 8082	10/05/09	10/06/09 12:22	SAK	
Polycyclic Aromatic Hydrocarbons (SIM)								
Acenaphthene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Acenaphthylene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Anthracene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Benzo[a]anthracene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Benzo[a]pyrene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Benzo[b]fluoranthene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Benzo[g,h,i]perylene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Benzo[k]fluoranthene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Chrysene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Dibenz[a,h]anthracene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Fluoranthene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Fluorene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Indeno[1,2,3-cd]pyrene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
2-Methylnaphthalene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Naphthalene`	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Phenanthrene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Pyrene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 16:56	JKL	
Total Metals								
Antimony	ND	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 13:57	MEL	
Arsenic	10	mg/kg	0.37	EPA 6020A	10/06/09	10/07/09 13:57	MEL	
Beryllium	ND	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 13:57	MEL	
Cadmium	ND	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 13:57	MEL	
Chromium	23	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 13:57	MEL	
Copper	6.6	mg/kg	1.8	EPA 6020A	10/06/09	10/08/09 13:20	MEL	
Lead	13	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 13:57	MEL	
Mercury	ND	mg/kg	0.074	EPA 6020A	10/06/09	10/07/09 13:57	MEL	
Nickel	ND	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 13:57	MEL	
Selenium	ND	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 13:57	MEL	
Silver	ND	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 13:57	MEL	
Thallium	ND	mg/kg	1.5	EPA 6020A	10/06/09	10/07/09 13:57	MEL	
Zinc	9.3	mg/kg	1.8	EPA 6020A	10/06/09	10/08/09 13:20	MEL	

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 11:30 Date Received: 10/05/09 9:00 Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID: SB-5 0-1' Matrix: Soil Lab ID: 09100501-08

Result Unit LLQ Method Prepared Analyzed Init.

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

 $\ensuremath{\mathsf{ND}}$ - $\ensuremath{\mathsf{Not}}$ Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 11:35 Date Received: 10/05/09 9:00 Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Field Sample ID: SB-5 4-5'		Mat	rix: Soil		La	ab ID: 091008	501-09
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	87	%		SM2540G	10/06/09	10/07/09 10:48	LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Acenaphthylene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Anthracene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Benzo[a]anthracene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Benzo[a]pyrene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Benzo[b]fluoranthene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Benzo[g,h,i]perylene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Benzo[k]fluoranthene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Chrysene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Dibenz[a,h]anthracene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Fluoranthene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Fluorene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Indeno[1,2,3-cd]pyrene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
2-Methylnaphthalene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Naphthalene`	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Phenanthrene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Pyrene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 17:39	JKL
Target Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Chloromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Vinyl chloride	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Bromomethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Chloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Trichlorofluoromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,1-Dichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Acetone	ND	ug/kg	47	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Carbon disulfide	ND	ug/kg	9	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Methyl acetate	ND	ug/kg	24	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Methylene chloride	ND	ug/kg	24	EPA 8260B	10/06/09	10/06/09 13:47	JKL
trans-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,1-Dichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
cis-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
2-Butanone (MEK)	ND	ug/kg	47	EPA 8260B	10/06/09	10/06/09 13:47	
Chloroform	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,1,1-Trichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 11:35 Date Received: 10/05/09 9:00 Date Issued: 10/12/09

Project: State Center Site Location: Baltimore, MD

Field Sample ID: SB-5 4-5'		Mat	rix: Soil		La	ab ID: 091005	501-09
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound List - VOLATILES							
Cyclohexane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Carbon tetrachloride	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Benzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,2-Dichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Trichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Methylcyclohexane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,2-Dichloropropane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Bromodichloromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
cis-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	9	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Toluene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
trans-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,1,2-Trichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Tetrachloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
2-Hexanone (MBK)	ND	ug/kg	9	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Dibromochloromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,2-Dibromoethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Chlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Ethylbenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
m&p-Xylene	ND	ug/kg	9	EPA 8260B	10/06/09	10/06/09 13:47	JKL
o-Xylene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Styrene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Bromoform	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Isopropylbenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,1,2,2-Tetrachloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,3-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,4-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,2-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,2-Dibromo-3-chloropropane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
1,2,4-Trichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Naphthalene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
tert-Butanol (TBA)	ND	ug/kg	24	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Diisopropyl ether (DIPE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
tert-Amyl methyl ether (TAME)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
tert-Amyl alcohol (TAA)	ND	ug/kg	24	EPA 8260B	10/06/09	10/06/09 13:47	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 13:47	JKL
Fotal Metals							
Antimony	ND	mg/kg	2.1	EPA 6020A	10/06/09	10/07/09 14:03	MEL
•		5 5					

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 11:35 Date Received: 10/05/09 9:00 Date Issued: 10/12/09

Project: State Center Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID:	SB-5 4-5'		Ma	trix: Soi	I	La	b ID: 09100	501-09
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Total Metals								
Arsenic		4.0	mg/kg	0.42	EPA 6020A	10/06/09	10/07/09 14:03	MEL
Beryllium		ND	mg/kg	2.1	EPA 6020A	10/06/09	10/07/09 14:03	MEL
Cadmium		ND	mg/kg	2.1	EPA 6020A	10/06/09	10/07/09 14:03	MEL
Chromium		24	mg/kg	2.1	EPA 6020A	10/06/09	10/07/09 14:03	MEL
Copper		7.0	mg/kg	2.1	EPA 6020A	10/06/09	10/08/09 13:25	MEL
Lead		5.5	mg/kg	2.1	EPA 6020A	10/06/09	10/07/09 14:03	MEL
Mercury		ND	mg/kg	0.084	EPA 6020A	10/06/09	10/07/09 14:03	MEL
Nickel		2.7	mg/kg	2.1	EPA 6020A	10/06/09	10/07/09 14:03	MEL
Selenium		ND	mg/kg	2.1	EPA 6020A	10/06/09	10/07/09 14:03	MEL
Silver		ND	mg/kg	2.1	EPA 6020A	10/06/09	10/07/09 14:03	MEL
Thallium		ND	mg/kg	1.7	EPA 6020A	10/06/09	10/07/09 14:03	MEL
Zinc		6.7	mg/kg	2.1	EPA 6020A	10/06/09	10/08/09 13:25	MEL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

 $\ensuremath{\mathsf{ND}}$ - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 12:10
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Field Sample ID: TW-5		Mat	rix: Wate	er	Lab ID: 09100501-1		
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
arget Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Chloromethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Vinyl chloride	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Bromomethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Chloroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Trichlorofluoromethane	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,1-Dichloroethene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Acetone	ND	ug/L	10	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Carbon disulfide	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Methyl acetate	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Methylene chloride	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:45	JKL
trans-1,2-Dichloroethene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Methyl t-butyl ether (MTBE)	15	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,1-Dichloroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
cis-1,2-Dichloroethene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
2-Butanone (MEK)	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Chloroform	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,1,1-Trichloroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Cyclohexane	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Carbon tetrachloride	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Benzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,2-Dichloroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Trichloroethene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Methylcyclohexane	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,2-Dichloropropane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Bromodichloromethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
cis-1,3-Dichloropropene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Toluene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
trans-1,3-Dichloropropene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,1,2-Trichloroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Tetrachloroethene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
2-Hexanone (MBK)	ND	ug/L	5	EPA 8260B	10/07/09	10/07/09 17:45	
Dibromochloromethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,2-Dibromoethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Chlorobenzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Ethylbenzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
m&p-Xylene	ND	ug/L	2	EPA 8260B	10/07/09	10/07/09 17:45	JKL
o-Xylene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
- y		~g· =	•			2.23010	

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 12:10
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID: TW-5		Mat	rix: Wat	er	La	b ID: 09100	501-10
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound List - VOLATILES							
Styrene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Bromoform	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Isopropylbenzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,1,2,2-Tetrachloroethane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,3-Dichlorobenzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,4-Dichlorobenzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,2-Dichlorobenzene	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,2-Dibromo-3-chloropropane	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
1,2,4-Trichlorobenzene	ND	ug/L	2	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Naphthalene	ND	ug/L	3	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
tert-Butanol (TBA)	ND	ug/L	25	EPA 8260B	10/07/09	10/07/09 17:45	JKL
Diisopropyl ether (DIPE)	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
tert-Amyl methyl ether (TAME)	2	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL
tert-Amyl alcohol (TAA)	ND	ug/L	25	EPA 8260B	10/07/09	10/07/09 17:45	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/L	1	EPA 8260B	10/07/09	10/07/09 17:45	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by:

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 12:51
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID: SB-3 0-1'		Ma	trix: Soi	Ī	La	b ID: 09100	501-11
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	81	%		SM2540G	10/06/09	10/07/09 10:47	LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	14	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Acenaphthylene	340	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Anthracene	120	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Benzo[a]anthracene	330	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Benzo[a]pyrene	800	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Benzo[b]fluoranthene	820	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Benzo[g,h,i]perylene	250	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Benzo[k]fluoranthene	260	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Chrysene	380	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Dibenz[a,h]anthracene	60	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Fluoranthene	320	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Fluorene	6	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Indeno[1,2,3-cd]pyrene	230	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
2-Methylnaphthalene	51	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Naphthalene`	75	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Phenanthrene	130	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Pyrene	840	ug/kg	6	EPA 8270C	10/06/09	10/08/09 18:23	JKL
Total Metals							
Antimony	ND	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 14:10	MEL
Arsenic	2.2	mg/kg	0.37	EPA 6020A	10/06/09	10/07/09 14:10	MEL
Beryllium	ND	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 14:10	MEL
Cadmium	ND	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 14:10	MEL
Chromium	15	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 14:10	MEL
Copper	8.6	mg/kg	1.8	EPA 6020A	10/06/09	10/08/09 13:29	MEL
Lead	53	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 14:10	MEL
Mercury	0.078	mg/kg	0.073	EPA 6020A	10/06/09	10/07/09 14:10	MEL
Nickel	6.7	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 14:10	MEL
Selenium	ND	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 14:10	MEL
Silver	ND	mg/kg	1.8	EPA 6020A	10/06/09	10/07/09 14:10	MEL
Thallium	ND	mg/kg	1.5	EPA 6020A	10/06/09	10/07/09 14:10	MEL
Zinc	33	mg/kg	1.8	EPA 6020A	10/06/09	10/08/09 13:29	MEL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 13:00
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Field Sample ID: SB-3 4-5'		Mat	rix: Soil		La	b ID: 09100	501-12
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	87	%		SM2540G	10/06/09	10/07/09 10:47	LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Acenaphthylene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Anthracene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Benzo[a]anthracene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Benzo[a]pyrene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Benzo[b]fluoranthene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Benzo[g,h,i]perylene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Benzo[k]fluoranthene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Chrysene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Dibenz[a,h]anthracene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Fluoranthene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Fluorene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Indeno[1,2,3-cd]pyrene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
2-Methylnaphthalene	13	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Naphthalene`	14	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Phenanthrene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Pyrene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 19:08	JKL
Target Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL
Chloromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL
Vinyl chloride	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL
Bromomethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL
Chloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL
Trichlorofluoromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL
1,1-Dichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL
Acetone	ND	ug/kg	50	EPA 8260B	10/06/09	10/06/09 14:20	JKL
Carbon disulfide	ND	ug/kg	10	EPA 8260B	10/06/09	10/06/09 14:20	JKL
Methyl acetate	ND	ug/kg	25	EPA 8260B	10/06/09	10/06/09 14:20	JKL
Methylene chloride	ND	ug/kg	25	EPA 8260B	10/06/09	10/06/09 14:20	JKL
trans-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL
1,1-Dichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL
cis-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL
2-Butanone (MEK)	ND	ug/kg	50	EPA 8260B	10/06/09	10/06/09 14:20	JKL
Chloroform	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL
1,1,1-Trichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 13:00
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center Site Location: Baltimore, MD

Field Sample ID: SB-3 4-5'		Mat	rix: Soil		La	ab ID: 091005	501-12	
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.	
Farget Compound List - VOLATILES								
Cyclohexane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Carbon tetrachloride	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Benzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
1,2-Dichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Trichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Methylcyclohexane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
1,2-Dichloropropane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Bromodichloromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
cis-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	10	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Toluene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
trans-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
1,1,2-Trichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Tetrachloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
2-Hexanone (MBK)	ND	ug/kg	10	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Dibromochloromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
1,2-Dibromoethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Chlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Ethylbenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
m&p-Xylene	ND	ug/kg	10	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
o-Xylene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Styrene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Bromoform	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Isopropylbenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
1,3-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
1,4-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
1,2-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
1,2-Dibromo-3-chloropropane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
1,2,4-Trichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Naphthalene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Ethyl t-butyl ether (ETBE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
tert-Butanol (TBA)	ND	ug/kg	25	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Diisopropyl ether (DIPE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
tert-Amyl methyl ether (TAME)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
tert-Amyl alcohol (TAA)	ND	ug/kg	25	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
tert-Amyl ethyl ether (TAEE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:20	JKL	
Total Metals								
Antimony	ND	mg/kg	1.7	EPA 6020A	10/06/09	10/07/09 14:16	MEL	

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 13:00
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID:	SB-3 4-5'		Mat	rix: Soil		La	b ID: 09100	501-12
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Total Metals								
Arsenic		2.5	mg/kg	0.35	EPA 6020A	10/06/09	10/07/09 14:16	MEL
Beryllium		ND	mg/kg	1.7	EPA 6020A	10/06/09	10/07/09 14:16	MEL
Cadmium		ND	mg/kg	1.7	EPA 6020A	10/06/09	10/07/09 14:16	MEL
Chromium		14	mg/kg	1.7	EPA 6020A	10/06/09	10/07/09 14:16	MEL
Copper		3.5	mg/kg	1.7	EPA 6020A	10/06/09	10/08/09 13:34	MEL
Lead		23	mg/kg	1.7	EPA 6020A	10/06/09	10/07/09 14:16	MEL
Mercury		ND	mg/kg	0.07	EPA 6020A	10/06/09	10/07/09 14:16	MEL
Nickel		5.8	mg/kg	1.7	EPA 6020A	10/06/09	10/07/09 14:16	MEL
Selenium		ND	mg/kg	1.7	EPA 6020A	10/06/09	10/07/09 14:16	MEL
Silver		ND	mg/kg	1.7	EPA 6020A	10/06/09	10/07/09 14:16	MEL
Thallium		ND	mg/kg	1.4	EPA 6020A	10/06/09	10/07/09 14:16	MEL
Zinc		17	mg/kg	1.7	EPA 6020A	10/06/09	10/08/09 13:34	MEL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

 $\ensuremath{\mathsf{ND}}$ - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 13:35 Date Received: 10/05/09 9:00 Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID: SB-4 0-1'		Mat	trix: Soil		La	nb ID: 09100	501-13
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	85	%		SM2540G	10/06/09	10/07/09 10:47	LMJ
Polycyclic Aromatic Hydrocarbons (SIM)							
Acenaphthene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Acenaphthylene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Anthracene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Benzo[a]anthracene	13	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Benzo[a]pyrene	12	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Benzo[b]fluoranthene	16	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Benzo[g,h,i]perylene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Benzo[k]fluoranthene	7	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Chrysene	13	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Dibenz[a,h]anthracene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Fluoranthene	21	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Fluorene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Indeno[1,2,3-cd]pyrene	6	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
2-Methylnaphthalene	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Naphthalene`	ND	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Phenanthrene	12	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Pyrene	28	ug/kg	6	EPA 8270C	10/06/09	10/08/09 19:53	JKL
Total Metals							
Antimony	ND	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 14:22	MEL
Arsenic	2.6	mg/kg	0.53	EPA 6020A	10/06/09	10/07/09 14:22	MEL
Beryllium	ND	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 14:22	MEL
Cadmium	ND	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 14:22	MEL
Chromium	43	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 14:22	MEL
Copper	30	mg/kg	2.6	EPA 6020A	10/06/09	10/08/09 13:38	MEL
Lead	16	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 14:22	MEL
Mercury	ND	mg/kg	0.11	EPA 6020A	10/06/09	10/07/09 14:22	MEL
Nickel	35	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 14:22	MEL
Selenium	ND	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 14:22	MEL
Silver	ND	mg/kg	2.6	EPA 6020A	10/06/09	10/07/09 14:22	MEL
Thallium	ND	mg/kg	2.1	EPA 6020A	10/06/09	10/07/09 14:22	MEL
Zinc	76	mg/kg	2.6	EPA 6020A	10/06/09	10/08/09 13:38	MEL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 13:40
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center
Site Location: Baltimore, MD

Field Sample ID: SB-4 4-5'		Mat	rix: Soil		Lab ID: 09100501-1			
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.	
Percent Solids								
Percent Solids	91	%		SM2540G	10/06/09	10/07/09 10:47	LMJ	
Polycyclic Aromatic Hydrocarbons (SIM)								
Acenaphthene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Acenaphthylene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Anthracene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Benzo[a]anthracene	8	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Benzo[a]pyrene	6	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Benzo[b]fluoranthene	10	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Benzo[g,h,i]perylene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Benzo[k]fluoranthene	5	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Chrysene	8	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Dibenz[a,h]anthracene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Fluoranthene	13	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Fluorene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Indeno[1,2,3-cd]pyrene	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
2-Methylnaphthalene	5	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Naphthalene`	ND	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Phenanthrene	13	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Pyrene	16	ug/kg	5	EPA 8270C	10/06/09	10/08/09 20:37	JKL	
Target Compound List - VOLATILES								
Dichlorodifluoromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
Chloromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
Vinyl chloride	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
Bromomethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
Chloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
Trichlorofluoromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
1,1-Dichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
Acetone	ND	ug/kg	48	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
Carbon disulfide	ND	ug/kg	10	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
Methyl acetate	ND	ug/kg	24	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
Methylene chloride	ND	ug/kg	24	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
trans-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
Methyl t-butyl ether (MTBE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
1,1-Dichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
cis-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
2-Butanone (MEK)	ND	ug/kg	48	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
Chloroform	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL	
1,1,1-Trichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56		

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 13:40
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center Site Location: Baltimore, MD

Field Sample ID: SB-4 4-5'		Mat	rix: Soil		La	ab ID: 091005	501-14
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound List - VOLATILES							
Cyclohexane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Carbon tetrachloride	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Benzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
1,2-Dichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Trichloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Methylcyclohexane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
1,2-Dichloropropane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Bromodichloromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
cis-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	10	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Toluene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
trans-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
1,1,2-Trichloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Tetrachloroethene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
2-Hexanone (MBK)	ND	ug/kg	10	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Dibromochloromethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
1,2-Dibromoethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Chlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Ethylbenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
m&p-Xylene	ND	ug/kg	10	EPA 8260B	10/06/09	10/06/09 14:56	JKL
o-Xylene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Styrene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Bromoform	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Isopropylbenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
1,1,2,2-Tetrachloroethane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
1,3-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
1,4-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
1,2-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
1,2-Dibromo-3-chloropropane	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
1,2,4-Trichlorobenzene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Naphthalene	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
tert-Butanol (TBA)	ND	ug/kg	24	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Diisopropyl ether (DIPE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
tert-Amyl methyl ether (TAME)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
tert-Amyl alcohol (TAA)	ND	ug/kg	24	EPA 8260B	10/06/09	10/06/09 14:56	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/kg	5	EPA 8260B	10/06/09	10/06/09 14:56	JKL
Fotal Metals							
Antimony	ND	mg/kg	2.3	EPA 6020A	10/06/09	10/07/09 14:28	MEL

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211 Date Sampled: 10/03/09 13:40
Date Received: 10/05/09 9:00
Date Issued: 10/12/09

Project: State Center Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

Field Sample ID:	SB-4 4-5'		Lab ID: 09100501-14					
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Total Metals								
Arsenic		1.3	mg/kg	0.46	EPA 6020A	10/06/09	10/07/09 14:28	MEL
Beryllium		ND	mg/kg	2.3	EPA 6020A	10/06/09	10/07/09 14:28	MEL
Cadmium		ND	mg/kg	2.3	EPA 6020A	10/06/09	10/07/09 14:28	MEL
Chromium		29	mg/kg	2.3	EPA 6020A	10/06/09	10/07/09 14:28	MEL
Copper		28	mg/kg	2.3	EPA 6020A	10/06/09	10/08/09 13:42	MEL
Lead		7.4	mg/kg	2.3	EPA 6020A	10/06/09	10/07/09 14:28	MEL
Mercury		ND	mg/kg	0.093	EPA 6020A	10/06/09	10/07/09 14:28	MEL
Nickel		32	mg/kg	2.3	EPA 6020A	10/06/09	10/07/09 14:28	MEL
Selenium		ND	mg/kg	2.3	EPA 6020A	10/06/09	10/07/09 14:28	MEL
Silver		ND	mg/kg	2.3	EPA 6020A	10/06/09	10/07/09 14:28	MEL
Thallium		ND	mg/kg	1.9	EPA 6020A	10/06/09	10/07/09 14:28	MEL
Zinc		74	mg/kg	2.3	EPA 6020A	10/06/09	10/08/09 13:42	MEL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

 $\ensuremath{\mathsf{ND}}$ - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

8851 Orchard Tree Lane Towson, MD 21286 Phone: 410.825.1151

> Fax: 410.825.2126 www.caslabs.net

Chain of Custody Record

Customer:	URban GREEN
Contact/Report to:	Denise Sullivan
Phone:	410 779 1214
Fax:	410 779 1201

E-mail address:	denise@ugeny.com
Project Name:	STATE CENTER
Project Number:	016-003
Location:	Baltimore

SDG Number:	09/00501
Sampled by:	Nas
PO Number:	016-003

Analysis Requested Preservative Sampling Remarks/ Time No. of Lab Number Field Sample ID Date Sampled Sampled Bottles Matrix Comments 09100501-01 S -62 3 X S TW - 1 GW 1023 3 -06 -07 1050 1135 S

Relinquished by:	Bile Harmon	Date/Time:	10/05/09090	Deliverables:	Receipt Temperature:	Turnaround Time:
Received by:	Cohane	Date/Time:	10/05/09 090			STD Next Day 2-Day Other
Relinquished by:		Date/Time:		Custody Seals:	Comments/Special Instruc	tions:
Received by:		Date/Time:		Sample Cooler	VCP Residenti	ial .
Relinquished by:		Date/Time:		Delivered by client		
Received by:		Date/Time:)	

8851 Orchard Tree Lane Towson, MD 21286 Phone: 410.825.1151

Fax: 410.825.2126 www.caslabs.net

Chain of Custody Record

Customer:	URBAN GREEN
	Denise Sullivan
Phone:	410779 1214
Fax:	410 779 1201

E-mail address:	denise@ ugenv.com
Project Name:	016-003
Project Number:	016-003
Location:	Baltimore, MN

SDG Number:	09100501
Sampled by:	DAS
PO Number	611 -002

		_							Analys	sis Re	quest	ted			
					Preserva	tive									
			Time	No. of				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 mals						Sampling Remarks/
Lab Number	Field Sample ID	Date Sampled		Bottles	Matrix	/ ~	A	A							Comments
09100501 -09	SB-5 4-5	10/3/09	1135	3	S	×									
, -10	TW-5	10/3/09	1910	3	W	X									
-11	33-3 0-1	10/3/09	1251	1	S	•	X	×							
-12	3B-3 4-5	10/5/09	1300	3	3	×									
11	SB-3 4-5	10/3/09	1300	l	8		X	V							
-13	5B-40-1		1335	1	S		X	×							
1/-14	SB-4 4-5		1340	3	S	×									
10	SB-4 4-5		1340		S		×	×							

Relinquished by:	Bill Harmon	Date/Time:	10/05/09 0900	Deliverables:	Receipt Temperature:	Turnaround Time:
Received by:	aspare	Date/Time:	10/05/09 0900	I II III CLP EDD	Temp: On Ice	STD Next Day 2-Day Other
Relinquished by:		Date/Time:		Custody Seals:	Comments/Special Instruct	
Received by:		Date/Time:		Sample Cooler	MDEVCPR	Esidentia
Relinquished by:		Date/Time:		Delivered by client	The second	
Received by:		Date/Time:				

CALIBER ANALYTICAL SERVICES

Certificate of Analysis

Urban Green Environmental 3634 Beech Ave. Baltimore, MD 21211

Date Sampled: 10/03/09 9:20
Date Received: 10/05/09 9:00
Date Issued: 10/22/2009

Project: State Center
Site Location: Baltimore, MD

Project Number: 016-003 SDG Number: 09100501

		Result	Unit	LLQ	Method	Prepared	Ana	lyzed	Init.
Field Sample ID:	SB-2 19-20'		Matrix:	Soil		La	b ID:	09100	501-04
Polycyclic Aromatic	Hydrocarbons (SIM	1)							
Acenaphthene		ND	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Acenaphthylene		ND	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Anthracene		ND	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Benzo[a]anthracene		ND	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Benzo[a]pyrene		ND	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Benzo[b]fluoranthene	;	ND	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Benzo[g,h,i]perylene		5	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Benzo[k]fluoranthene	•	ND	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Chrysene		ND	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Dibenz[a,h]anthracer	ie	10	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Fluoranthene		ND	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Fluorene		ND	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Indeno[1,2,3-cd]pyre	ne	8	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
2-Methylnaphthalene		8	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Naphthalene`		ND	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Phenanthrene		ND	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Pyrene		ND	ug/kg	5	EPA 8270C	10/06/09	10/21	09 10:30	JKL
Total Metals									
Antimony		ND	mg/kg	2	EPA 6020A	10/15/09	10/16	09 14:35	MEL
Arsenic		ND	mg/kg	0.4	EPA 6020A	10/15/09	10/16	09 14:35	MEL
Beryllium		ND	mg/kg	2	EPA 6020A	10/15/09	10/16	09 14:35	MEL
Cadmium		ND	mg/kg	2	EPA 6020A	10/15/09	10/16	09 14:35	MEL
Chromium		ND	mg/kg	2	EPA 6020A	10/15/09	10/16	09 14:35	MEL
Copper		ND	mg/kg	2	EPA 6020A	10/15/09	10/16	09 14:35	MEL
Lead		ND	mg/kg	2	EPA 6020A	10/15/09	10/16	09 14:35	MEL
Mercury		ND	mg/kg	0.081	EPA 6020A	10/15/09	10/16	09 14:35	MEL
Nickel		ND	mg/kg	2	EPA 6020A	10/15/09	10/16	09 14:35	MEL
Selenium		ND	mg/kg	2	EPA 6020A	10/15/09	10/16	09 14:35	MEL
Silver		ND	mg/kg	2	EPA 6020A	10/15/09	10/16	09 14:35	MEL
Thallium		ND	mg/kg	1.6	EPA 6020A	10/15/09	10/16	09 14:35	MEL
Zinc		ND	mg/kg	2	EPA 6020A	10/15/09	10/16	09 14:35	MEL

Notes/Qualifiers:

LLQ - Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved By:

Quality Assurance Chemist

8851 Orchard Tree Lane Towson, MD 21286 Phone: 410.825.1151

> Fax: 410.825.2126 www.caslabs.net

Chain of Custody Record

Customer:	URban GREEN
Phone:	410 779 1214
Fax:	410 779 1201

E-mail address:	denise@useny.com
Project Name:	STATE CENTER
Project Number:	016-003
Location:	Baltimore

SDG Number:	09/00501
Sampled by:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
PO Number:	016-003

Analysis Requested Preservative Sampling Remarks/ Time No. of Lab Number Field Sample ID Date Sampled Sampled Matrix **Bottles** Comments 09100501-01 S -62 3 X S Add PAH and PPLM, per DS 10/16/09 -05 TW - 1 GW 1023 -06 -07 1050 1135 S

Relinquished by:	Bell Harmon	Date/Time:	10/05/090900	Deliverables:	Receipt Temperature:	Turnaround Time:			
Received by:	Cohane	Date/Time:	10/05/09 0900	I II III CLP EDD	Temp: On Ice	STD Next Day 2-Day Other			
Relinquished by:		Date/Time:		Custody Seals:	Comments/Special Instructions:				
Received by:		Date/Time:		Sample Cooler	VCP Residenti	al			
Relinquished by:		Date/Time:		Delivered by client					
Received by:		Date/Time:	\						

8851 Orchard Tree Lane Towson, MD 21286 Phone: 410.825.1151

Fax: 410.825.2126 www.caslabs.net

Chain of Custody Record

Customer:	URBAN GREEN
	Denise Sullivan
Phone:	410779 1214
Fax:	410 779 1201

E-mail address:	denise@ ugenv.com
Project Name:	016-003
Project Number:	016-003
Location:	Baltimore, MN

SDG Number:	09100501
Sampled by:	DAS
PO Number	611 -002

	Analysis Requested												
					Preserva	tive							
			Time	No. of				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 mals				Sampling Remarks/
Lab Number	Field Sample ID	Date Sampled	The second secon	Bottles	Matrix	/ ~	A	A					Comments
09100501 -09	SB-5 4-5	10/3/09	1135	3	S	×							
, -10	TW-5	10/3/09	1910	3	W	X							
-11	33-3 0-1	10/3/09	1251	1	S	•	X	×					
-12	3B-3 4-5	10/5/09	1300	3	3	×							
11	SB-3 4-5	10/3/09	1300	l	8		X	V					
-13	5B-40-1		1335	1	S		X	×					
1/-14	SB-4 4-5		1340	3	S	×							
10	SB-4 4-5		1340		S		×	×					

Relinquished by:	Bill Harmon	Date/Time:	10/05/09 0900	Deliverables:	Receipt Temperature:	Turnaround Time:			
Received by:	aspare	Date/Time:	10/05/09 0900	I II III CLP EDD	Temp: On Ice	STD Next Day 2-Day Other			
Relinquished by:		Date/Time:		Custody Seals:	Comments/Special Instructions:				
Received by:		Date/Time:		Sample Cooler	MDEVCPR	Esidentia			
Relinquished by:		Date/Time:		Delivered by client					
Received by:		Date/Time:							